Article
  • Characteristics of a Halloysite Filled Epoxy Resin System
  • Jeong Woo Lee and Dae Su Kim

  • Department of Chemical Engineering, Chungbuk National University, 1 Chungdaero, Seowongu, Cheongju, Chungbuk 28644, Korea

  • 할로이사이트 충전 에폭시 수지 계의 특성
  • 이정우 · 김대수

  • 충북대학교 공과대학 화학공학과

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Jin, F. L.; Li, X.; Park, S. J. Synthesis and Application of Epoxy Resins: A Review. J. Ind. Eng. Chem. 2015, 44, 1-11.
  •  
  • 2. Kim, T.; Lim, C. S.; Kim, J. C.; Seo, B. Thermal and Mechanical Properties of Epoxy Composition Containing Modified Halosite Nanotubes with Silane Coupling Agent. J. Adhes. Interface 2017, 18, 68-74.
  •  
  • 3. Harada, M. Development Trend of Epoxy Resin. J. Adhes. Interface 2018, 19, 44-49.
  •  
  • 4. Roudsari, G. M.; Mohanty, A. K.; Misra, M. Green Approaches to Engineer Tough Biobased Epoxies: A Review. ACS Sustain. Chem. Eng. 2017, 5, 9528-9541.
  •  
  • 5. Konnola, R.; Deeraj, B. D. S.; Sampath, S.; Saritha, A.; Joseph, K. Fabrication and Characterization of Toughened Nanocomposites Based on TiO2 Nanowire‐Epoxy System. Polym. Compos. 2019, 40, 2629-2638.
  •  
  • 6. Ravichandran, G.; Rathnakar, G.; Santhosh, N.; Chennakeshava, R.; Hashmi, M. A. Enhancement of Mechanical Properties of Epoxy/Halloysite nanotube (HNT) Nanocomposites. SN Appl. Sci. 2019, 1, 296.
  •  
  • 7. White, R. D.; Bavykin, D. V.; Walsh, F. C. The Stability of Halloysite Nanotubes in Acidic and Alkaline Aqueous Suspensions. Nanotechnology 2012, 23, 6.
  •  
  • 8. Zeng, S.; Reyes, C.; Liu, J.; Rodgers, P. A.; Wentworth, S. H.; Sun, L. Facile Hydroxylation of Halloysite Nanotubes for Epoxy Nanocomposite Applications. Polymer 2014, 55, 6519-6528.
  •  
  • 9. Srivastava, S.; Pandey, A. Mechanical Behavior and Thermal Stability of Ultrasonically Synthesized Halloysite-Epoxy Composite. Comput. Commun. 2019, 11, 39-44.
  •  
  • 10. Deng, S.; Zhang, J.; Ye, L.; Wu, J. Toughening Epoxies with Halloysite Nanotubes. Polymer 2018, 49, 5119-5127.
  •  
  • 11. Jiang, H.; Cheng, M.; Ai, C.; Meng, F.; Mou, Y.; Sun, S.; Li, C.; Hu, S. Surface Modified Halloysite Nanotube Enhanced Imine-based Epoxy Composites with High Self-healing Efficiency and Excellent Mechanical Properties. Polym. Chem. 2021, 12, 5342-5356.
  •  
  • 12. Alamri, H.; Low, I. M. Microstructural, Mechanical, and Thermal Characteristics of Recycled Cellulose Fiber‐Halloysite‐Epoxy Hybrid Nanocomposites. Polym. Compos. 2012, 33, 589-600.
  •  
  • 13. Gaaz, T. S.; Sulong, A. B.; Kadhum, A. A. H.; Al-Amiery, A. A.; Nassir, M. H.; Jaaz, A. H. The Impact of Halloysite on the Thermo-mechanical Properties of Polymer Composites. Molecules2017, 22, 838.
  •  
  • 14. Akbari, V.; Najafi, F.; Vahabi, H.; Jouyandeh, M.; Badawi, M;. Morisset, S.; Saeb, M. R. Surface Chemistry of Halloysite Nanotubes Controls the Curability of Low Filled Epoxy Nanocomposites. Prog. Org. Coat. 2019, 135, 555-564.
  •  
  • 15. Del Buffa, S.; Bonini, M.; Ridi, F.; Severi, M.; Losi, P.; Volpi, S.; Baglioni, P. Design and Characterization of a Composite Material Based on Sr(II)-loaded Clay Nanotubes Included within a Biopolymer Matrix. J. Colloid Interface Sci. 2015, 448, 501-507.
  •  
  • 16. Kim, M. I.; Kim, S.; Kim, T.; Lee, D. K.; Seo, B.; Lim, C. S. Mechanical and Thermal Properties of Epoxy Composites Containing Zirconium Oxide Impregnated Halloysite Nanotubes. Coatings 2017, 7, 231.
  •  
  • 17. Longhi, M.; Zini, L. P.; Kunst, S. R.; Zattera, A. Influence of the Type of Epoxy Resin and Concentration of Glycidylisobutyl-POSS in the Properties of Nanocomposites. Polym. Polym. Compos. 2017, 25, 593-602.
  •  
  • 18. Onizuka, K. Epoxy Resin Hardener. J. Adhes. Interface 2017, 18, 2.
  •  
  • 19. Ferrari, P. C.; Araujo, F. F.; Pianaro, S. A. Halloysite Nanotubes-Polymeric Nanocomposites: Characteristics, Modifications and Controlled Drug Delivery Approaches. Cerâmica 2017, 63, 423-431.
  •  
  • 20. Sánchez, M.; Uicich, J. F.; Arenas, G. F.; Rodríguez, E. S.; Montemartini, P. E.; Penoff, M. E. Chemical Reactions Affecting Halloysite Dispersion in Epoxy Nanocomposites. J. Appl. Polym. Sci. 2019, 136, 47979.
  •  
  • 21. Altuna, F. I.; Riccardi, C. C.; Marín Quintero, D. C.; Ruseckaite, R. A.; Stefani, P. M. Effect of an Anhydride Excess on the Curing Kinetics and Dynamic Mechanical Properties of Synthetic and Biogenic Epoxy Resins. Int. J. Polym. Sci. 2019, 2019.
  •  
  • 22. Mauri, A. N.; Galego, N.; Riccardi, C. C.; Williams, R. J. J. Kinetic Model for Gelation in the Diepoxide-Cyclic Anhydride Copolymerization Initiated by Tertiary Amines. Macromolecules 1997, 30, 1616-1620.
  •  
  • 23. Jouyandeh, M.; Karami, Z.; Jazani, O. M.; Formela, K.; Paran, S. M. R.; Jannesari, A.; Saeb, M. R. Curing Epoxy Resin with Anhydride in the Presence of Halloysite Nanotubes: the Contradictory Effects of Filler Concentration. Prog. Org. Coat. 2019, 126, 129-135.
  •  
  • 24. Liu, M.; Guo, B.; Du, M.; Cai, X.; Jia, D. Properties of Halloysite Nanotube-Epoxy Resin Hybrids and the Interfacial Reactions in the Systems. Nanotechnology 2007, 18, 455703.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2022; 46(3): 361-368

    Published online May 25, 2022

  • 10.7317/pk.2022.46.3.361
  • Received on Jan 21, 2022
  • Revised on Feb 15, 2022
  • Accepted on Feb 24, 2022

Correspondence to

  • Dae Su Kim
  • Department of Chemical Engineering, Chungbuk National University, 1 Chungdaero, Seowongu, Cheongju, Chungbuk 28644, Korea

  • E-mail: dskim@cbnu.ac.kr