Article
  • Particulate Reinforcements in Dicyanate Composites with Nanoporous Aluminum Fumarate as Reactive Filler: Thermal Properties
  • Siva Kaylasa Sundari Saravanamuthu , Shamim Rishwana Syed Mohammed , Ramani Ramasubbu*, Arunjunai Raj Mahendran**, and Vijayakumar Chinnaswamy Thangavel***,†

  • Department of Chemistry, Kamaraj College of Engineering and Technology (Autonomous), S.P.G.C. Nagar, K. Vellakulam-625701, Tamil Nadu, India
    *Defence Bio-Engineering and Electromedical Laboratory, ADE Campus, C.V. Raman Nagar, Bengaluru-560093, Karnataka, India
    **Kompetenzzentrum Holz GmbH (W3C), Klagenfurter Straße 87-89, A-9300 St. Veit an der Glan, Austria
    ***Department of Polymer Technology, Kamaraj College of Engineering and Technology (Autonomous), S.P.G.C. Nagar, K. Vellakulam-625701, Tamil Nadu, India

  • 반응성 필러로써 Aluminum Fumarate을 이용한 Dicyanate Composites의 물성 강화: 열역학적 특성 연구
  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Hammerton, I. Chemistry and Technology of Cyanate Ester; Springer: Dordrecht, 1994.
  •  
  • 2. Fink, J. K. Reactive Polymers Fundamentals and Applications; William Andrew Publishing: Norwich, 2006.
  •  
  • 3. Laurence, W. M. The Effect of Long Term Thermal Exposure on Plastics and Elastomers; William Andrew Publishing: Norwich, 2014.
  •  
  • 4. Clerici, C.; Gu, X. H.; Sung, L.; Forster, A. M.; Ho, D. L.; Stutzman, P.; Nguyen, T.; Martin, J. W. Effect of Pigment Dispersion on Durability of a TiO2 Pigmented Epoxy Coating During Outdoor Exposure. In Service Life Prediction of Polymeric Materials; Martin, J. W., Ryntz, R. A., Chin, J., Dickie, R. A., Eds.; Springer: New York, 2009; pp 475-492.
  •  
  • 5. Guenthner, A. J.; Lamison, K. R.; Vij, V.; Reams, J. T.; Yandek, G. R.; Mabry, J. M. New Insights into Structure-Property Relationships in Thermosetting Polymers from Studies of Cocured Polycyanurate Networks. Macromolecules 2012, 45, 211-220.
  •  
  • 6. Sheng, X.; Akinc, M.; Kessler, M. R. Creep Behavior of Bisphenol E Cyanate Ester/Alumina Nanocomposites. Mater. Sci. Eng., A 2010, 527, 5892-5899.
  •  
  • 7. Reghunadhan Nair, C. P.; Mathew, D.; Ninan, K. N. Cyanate Ester Resins, Recent Developments. Adv. Polym. Sci. 2001, 1-99.
  •  
  • 8. Liu, J.; Fan, W.; Lu, G.; Zhou, D.; Wang, Z.; Yan, J. Semi-Interpenetrating Polymer Networks Based on Cyanate Ester and Highly Soluble Thermoplastic Polyimide. Polymers 2019, 11, 862.
  •  
  • 9. Oh, S.; Malpani, Y. S.; Jung, Y. S.; Kim, J. M. Photochemical Phase Transition Behavior of Supramolecular Polymer with a Triazine Core. Polym. Korea 2016, 40, 651-654.
  •  
  • 10. Harvey, B. G.; Davis, M.; Lamison, K.; Cambrea, L.; Ford, M.; Haines, S.; Cash, J. Cyanate Ester Composite Resins Derived from Renewable Polyphenol Sources; ADD557386; US Navy, NAVAIR, Naval Air Warfare Center, Weapons Division : China Lake, CA, 2011.
  •  
  • 11. Wang, F.; Wang, J.; Zhu, Y.; Zhang, Z.; Jiao, Y. Synthesis and Characterization of a Novel Cyanate Ester Containing Dimethyl Benzene Linkage. Int. J. Polym. Anal. Charact. 2010, 15, 415-423.
  •  
  • 12. George, W. Handbook of Fillers (Materials Science). 1999.
  •  
  • 13. Huang, L.; Wang, C.; Lu, Y. Thermal and Moisture Adsorption Properties of Cyanate Ester Modified Epoxy Resin and Fiber-Glass Composites. J. Reinf. Plast. Compos. 2008, 27, 725-738.
  •  
  • 14. Pietrowicz, S.; Four, A.; Jones, S.; Canfer, S.; Baudouy, B. Thermal Conductivity and Kapitza Resistance of Cyanate Ester Epoxy Mix and Tri-Functional Epoxy Electrical Insulations at Superfluid Helium Temperature. Cryogenics 2012, 52, 100-104.
  •  
  • 15. Suguna Lakshmi, M.; Reddy, B. S. R. Synthesis and Characterization of New Epoxy and Cyanate Ester Resins. Eur. Polym. J. 2002, 38, 795-801.
  •  
  • 16. Večeřa, M.; Prokůpek, L.; Machotová, J.; Šňupárek, J.; Husáková, L.; Urbanová, I.; Akštein, Z. Epoxy-Cyanate Ester Compositions as Matrixes for Tagging of Explosives. Adv. Polym. Technol. 2014, 33, 21399.
  •  
  • 17. Shi, P.; Wang, Y.; Guo, H.; Sun, H.; Zhao, Y. The Thermal and Mechanical Properties of Carbon Fiber/flake Graphite/cyanate Ester Composites. New Carbon Mater. 2019, 34, 110-114.
  •  
  • 18. Guo, Y.; Chen, F.; Han, Y.; Li, Z.; Liu, X.; Zhou, H.; Zhao, T. High-Performance Fluorinated Bismaleimide-Triazine Resin with Excellent Dielectric Properties. J. Polym. Res. 2018, 25, 27.
  •  
  • 19. Wen, Y.; Yan, J.; Liu, J.; Wang, Z. Interpenetrating Polymer Networks Based on Cyanate Ester and Fluorinated Ethynyl-Terminated Imide Oligomers. Express Polym. Lett. 2017, 11, 936-945.
  •  
  • 20. Kimura, H.; Ohtsuka, K.; Matsumoto, A. Curing Reaction of Bisphenol-A Based Benzoxazine with Cyanate Ester Resin and the Properties of the Cured Thermosetting Resin. Express Polym. Lett. 2011, 5, 1113-1122.
  •  
  • 21. Yang, Z.; Peng, H.; Wang, W.; Liu, T. Crystallization Behavior of Poly(ε-Caprolactone)/layered Double Hydroxide Nanocomposites. J. Appl. Polym. Sci. 2010, 116, 2658-2667.
  •  
  • 22. Baştürk, E.; Şen, F.; Kahraman, M. V.; Madakbaş, S. Bisphenol A (BADCy)/bisphenol P (BPDCy) Cyanate Ester/Colemanite Composites: Synthesis and Characterization. Polym. Bull. 2015, 72, 1611-1623.
  •  
  • 23. Mi, Y. N.; Liang, G.; Gu, A.; Zhao, F.; Yuan, L. Thermally Conductive Aluminum Nitride-Multiwalled Carbon Nanotube/cyanate Ester Composites with High Flame Retardancy and Low Dielectric Loss. Ind. Eng. Chem. Res. 2013, 52, 3342-3353.
  •  
  • 24. Li, Y.; Xu, G.; Guo, Y.; Ma, T.; Zhong, X.; Zhang, Q.; Gu, J. Fabrication, Proposed Model and Simulation Predictions on Thermally Conductive Hybrid Cyanate Ester Composites with Boron Nitride Fillers. Composites Pat A 2018, 107, 570-578.
  •  
  • 25. Ganguli, S.; Dean, D.; Jordan, K.; Price, G.; Vaia, R. Chemorheology of Cyanate Ester - Organically Layered Silicate Nanocomposites. Polymer 2003, 44, 6901-6911.
  •  
  • 26. Jin Seob, K.; Young Sil, L.; Kwan Han, Y.; Jong Hun, H. Mechanical Properties and Thermal Conductivity of Polycarbonate Composite Containing Aluminum-exfoliated Graphite Nanoplatelet Hybrid Powder. Polym. Korea 2021, 45, 275-280.
  •  
  • 27. Furukawa, S.; Reboul, J.; Diring, S.; Sumida, K.; Kitagawa, S. Structuring of Metal-Organic Frameworks at the Mesoscopic/macroscopic Scale. Chem. Soc. Rev. 2014, 5700-5734.
  •  
  • 28. Yanbei, H.; Zhoumei, X.; Fukai, C.; Zhou, G.; Lei, S.; Yuan Hu, WH. A Review on Metal-organic Hybrids as Flame Retardants for Enhancing Fire Safety of Polymer Composites. Composites Part B 2021, 221, 109014.
  •  
  • 29. Archana, K.; Pillai, N. G.; Rhee, K. Y.; Asif, A. Superparamagnetic ZIF-67 Metal Organic Framework Nanocomposite. Composites Part B 2018, 158, 384-389.
  •  
  • 30. Siva Kaylasa Sundari, S.; Shamim Rishwana, S.; Ramani, R.; Vijayakumar, C. T. Improvement in Electrical and Mechanical Properties of Di/trifunctional Epoxies-based Hybrid Composites Having Metal Organic Frameworks (MOFs) as Nanoparticulate filler. MRS Commun. 2021, 12, 250-256.
  •  
  • 31. Chopra, I. S.; Chaudhuri, S.; Veyan, J. F.; Chabal, Y. J. Turning Aluminium into a Noble-Metal-like Catalyst for Low-Temperature Activation of Molecular hydrogen. Nat. Mater. 2011, 10, 884-889.
  •  
  • 32. Whiteoak, C. J.; Kielland, N.; Laserna, V.; Escudero-ada, E. C.; Martin, E. A Powerful Aluminum Catalyst for the Synthesis of Highly Functional Organic Carbonates. J. Am. Chem. Soc. 2013, 135, 1228-1231.
  •  
  • 33. Siva Kaylasa Sundari, S.; Shamim Rishwana, S.; Kotresh, T. M.; Ramani, R.; Indu Shekar, R.; Vijayakumar, C. T. Effect of Structural Variation on the Thermal Degradation of Aluminium Fumarate: Nanoporous Metal Organic Framework (MOF). J. Therm. Anal. Calorim. 2022, 147, 5067-5085.
  •  
  • 34. Hangtao, C.; Beijum, Liu.; Yunfang, L.; Peng, L. Reconstruction of the Microstructure of Cyanate Resin by Using Prepared Cyanate Ester Resin Nanoparticles and Analysis of the Curing Kinetics Using Avrami Equation of Phase Change. Appl. Sci. 2019, 9, 2365.
  •  
  • 35. Gouthaman, S.; Venkatesh, M.; Stanley Olivier, K.; Suguna Lakshmi.; Hamerton, I. Examining the Thermal Degradation Behavior of a Series of Cyanate Ester Homopolymers. Polym. Int. 2019, 68, 1666-1672.
  •  
  • 36. Shilpi, T.; Chhagan Lal, G.; Kavita Srivastava, D. S. Simulation of the Thermal Degradation and Curing Kinetics of Fly Ash Reinforced Diglycidyl Ether Bisphenol A Composite. J. Indian Chem. Soc. 2021, 98, 100077.
  •  
  • 37. Zhao, L.; Hu, X. Autocatalytic Curing Kinetics of Thermosetting Polymers : A New Model Based on Temperature-dependent Reaction Orders. Polymer 2010,51, 3814-3820.
  •  
  • 38. Sheng, X.; Akinc, M.; Kessler, M. R. Cure Kinetics of Thermosetting Bisphenol E Cyanate Ester. J. Therm. Anal. Calorim. 2008,93, 77-85.
  •  
  • 39. Reghunadhan Nair, C. P.; Francis, T. Blends of Bisphenol-A-Based Cyanate Ester and Bismaleimide: Cure and Thermal Characteristics. J. Appl. Polym. Sci. 1999, 74, 3365-3375.
  •  
  • 40. Siva Kaylasa Sundari, S.; Shamim Rishwana, S.; Poornimadevi, S.; Vijayakumar, C. T. Synthesis of Macromolecular Brush and its Thermal Degradation Studies. Int. J. Polym. Anal. Charact. 2022, 27, 147-157.
  •  
  • 41. Tang, L.; Zhang, J.; Tang, Y.; Zhou, Y.; Lin, Y.; Liu, Z.; Kong, J.; Liu, T.; Gu, J.Fluorine/Adamantane Modified Cyanate Resins with Wonderful Interfacial Bonding Strength with PBO Fibers. Composites Part B 2020, 186, 107827.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2022; 46(4): 426-435

    Published online Jul 25, 2022

  • 10.7317/pk.2022.46.4.426
  • Received on Aug 27, 2021
  • Revised on Apr 30, 2023
  • Accepted on May 20, 2022

Correspondence to

  • Vijayakumar Chinnaswamy Thangavel
  • Department of Polymer Technology, Kamaraj College of Engineering and Technology (Autonomous), S.P.G.C. Nagar, K. Vellakulam-625701, Tamil Nadu, India

  • E-mail: ctvijay22@yahoo.com