Article
  • Efficient Analysis of the Deformation and Fracture Properties of Nano-SiO2 Reinforced ABS/PMMA Composites
  • Jin Ding, Dian Chen Li, Ya Hui Huang*, and Zhen Shan Fu

  • Naval Architecture and Port Engineering College, Shandong Jiaotong University, Weihai 264209, China
    *School of Mechanical, Electrical and Information Engineering, Shandong University, Weihai 264209, China

  • 나노 크기의 SiO2로 강화된 ABS/PMMA 복합체의 변형과 파괴 거동 분석
  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Zhang, A. M.; Zhao, G. Q.; Guan, Y. J. Mechanical and Thermal Properties of ABS/PMMA/Potassium Titanate Whisker Composites. Polym. Plast. Technol. Eng. 2016, 56, 382-390.
  •  
  • 2. Kim, B. K.; Xie, X. M.; Yoon, L. K. Effects of Annealing in ABS Ternary Blends. J. Appl. Polym. Sci. 1997, 66, 1531-1542.
  •  
  • 3. Correa Gómez, E.; Domínguez Almaraz, G. M.; Verduzco Juárez, J. C. Crack Initiation and Propagation on CT Specimens of Two Polymers (ABS and PMMA), Under Cyclic Constant Displacement Loading. Theor. Appl. Fract. Mec. 2019, 100, 55-64.
  •  
  • 4. Shishavan, S. A.; Hasanzadeh, T.; Moradian, R. M. Comprehen sive Investigation of Morphological Properties of ABS/Nanoclay/PMMA Polymeric Nanocomposite Foam. Polym. Sci. Ser. A 2019, 61, 334-344.
  •  
  • 5. Maries, G. C.; Bungau, D.; Costea, C.; Moldovan, T. Determining the Influence of the Processing Temperature by Injection and of the Subsequent Pressure on the Surface's Hardness and Indentation Modulus of the Products Made of HDPE, PMMA, PC plus ABS through Nanoindentation - G-Series Basic Hardness Modulus at a Depth Method. Mater. Plastic. 2017, 54, 214-220.
  •  
  • 6. Dong, W. Y.; Ren, F. L.; Zhang, M. F.; Wang, J. Q.; Li, Y. J. Phenomenon of LCST-type Phase Behavior in SAN/PMMA Systems and Its Effect on the PLLA/ABS Blend Compatibilized by PMMA-type Polymers: Interface Stabilization or Micelle Formation. Polymer 2019, 163, 36-47.
  •  
  • 7. Zhang, W.; Xu, X.; Wang, H.; Wei, F.; Zhang, Y. Experimental and Numerical Analysis of Interfacial Bonding Strength of Polyox Ymethylene Reinforced Cement Composites. Constr. Build. Mater. 2019, 207, 1-9.
  •  
  • 8. Zhang, A. M.; Zhao, G. Q.; Guan, Y. Effect of Surface Modifiers and Surface Modification Methods on Properties of Acrylonitrile–Butadiene–Styrene/Poly(methylmethacrylate)/Nano-Calcium Carbonate Composites. J. Polym. Compos. 2013, 80, 2523-2532.
  •  
  • 9. Zhao, J.; Li, H.; Cheng, G.; Cai, Y. On Predicting the Effective Elastic Properties of Polymer Nanocomposites by Novel Numerical Implementation of Asymptotic Homogenization Method. Compos. Struct. 2016, 135, 297-305.
  •  
  • 10. Zhang, J.; Ouyang, Q.; Guo, Q.; Li, Z.; Fan, G.; Su, Y.; Jiang, L.; Lavernia, E. J.; Schoenung, J. M.; Zhang, D. 3D Microstructure-based Finite Element Modeling of Deformation and Fracture of SiCp/Al Composites. Compos. Sci. Technol. 2016, 123, 1-9.
  •  
  • 11. Sheng, P.; Zhang, J.; Ji, Z. An Advanced 3D Modeling Method for Concrete-like Particle-reinforced Composites with High Volume Fraction of Randomly Distributed Particles. Compos. Sci. Technol. 2016, 134, 26-35.
  •  
  • 12. Pontefisso, A.; Zappalorto, M.; Quaresimin, M. An Efficient RVE Formulation for the Analysis of the Elastic Properties of Spherical Nanoparticle Reinforced Polymers. Comput. Mater. Sci. 2015, 96, 319-326.
  •  
  • 13. Yuan, Z.; Li, F.; Xue, F.; He, M.; Hussain, M. Z. Analysis of the Stress States and Interface Damage in a Particle Reinforced Compo Site Based on a Micromodel Using Cohesive Elements. Mater. Sci. Eng. A 2014, 589, 288-302.
  •  
  • 14. Xiu, H. Selective Localization of Titanium Dioxide Nanoparticles at the Interface and Its Effect on the Impact Toughness of Poly(L-lactide)/poly(ether)urethane Blends. Exp. Polym. Lett. 2013, 7, 261-271.
  •  
  • 15. Mu, J.; Zhou, Y.; Bu, X.; Zhang, T. Preparation and Characte rization of Micron-Sized PMMA/SiO2 Composite Microspheres. J. Inorg. Organomet. 2014, 24, 776-779.
  •  
  • 16. Haghtalab, A.; Rahimi, S. Study of Viscoelastic Properties of Nano Composites of SiO2–acrylonitrile–butadiene–styrene. J. Appl. Polym. Sci. 2013, 127, 4318-4327.
  •  
  • 17. Ding, J.; Yue, Z. M.; Sun, J.; Gao, J. Effects of Nano-silicon Dioxide Surface Modification on the Morphology and Mechanical Properties of ABS/PMMA Blends. J. Polym. Eng. 2018, 38, 617-623.
  •  
  • 18. VuBac, N.; Lahmer, T.; Keitel, H.; Zhao, J.; Zhuang, X.; Rabczuk, T. A Unified Framework for Stochastic Predictions of Mechanical Properties of Polymeric Nanocomposites. Mech. Mater. 2014, 68, 70-84.
  •  
  • 19. Liu, S. T.; Cheng, G. D. Homogenization Method of Stress Analysis of Composites Strurcture. China. J. Theor. Appl. Mech. 1997, 29, 306-313.
  •  
  • 20. Tijssens, M.; vander Giessen, E.; Sluys, L. J. Modeling of Crazing Using a Cohesive Surface Methodology. Mech. Mater. 2000, 32, 19-35.
  •  
  • 21. Maltin, G. A.; Sluys, B. L.; Giessen, E. Numerical Simulation of Quasi-brittle Fracture Using Damaging Cohesive Surfaces. Euro. J. Mech. A 2000, 19, 761-779.
  •  
  • 22. Zhang, J. K.; Zhang, X. Simulating Low-velocity Impact Induced Delamination in Composites by a Quasi-static Load Model with Surface-based Cohesive Contact. Compos. Struct. 2015, 125, 51-57.
  •  
  • 23. Sagaei, M.; Baniassadi, M.; Ahzi, S.; Mosavi, M.; Pourboghrat, F. An Interfacial Debonding-induced Damage Model for Graphite Nanoplatelet Polymer Composites. Comput. Mater. Sci. 2015, 96, 191-199.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2022; 46(4): 436-443

    Published online Jul 25, 2022

  • 10.7317/pk.2022.46.4.436
  • Received on Nov 15, 2021
  • Revised on Mar 10, 2022
  • Accepted on Apr 5, 2022

Correspondence to

  • Zhen Shan Fu
  • Naval Architecture and Port Engineering College, Shandong Jiaotong University, Weihai 264209, China

  • E-mail: fuzhenshan@sdjtu.edu.cn