Article
  • High Performance Ionic Polymer-Metal Composite Actuators Based on Nanopatterned Nafion by Thermal Imprinting Lithography
  • Dong-Heon Han# , Jaewon Choi#,*, Seung-Ju Oh, Jae-Uk Yoon, In-Sun Woo, Jinah Kim, and Jin Woo Bae

  • Multifunctional Organic Polymer Laboratory, Future Convergence Engineering, School of Energy,
    Materials and Chemical Engineering, Korea University of Technology and Education, Cheonan 31253, Korea
    *Department of Carbon Convergence Engineering, Jeonju University, Jeonju 55069, Korea

  • 열압착으로 나노구조가 도입된 나피온을 이용한 고성능 이온성 고분자-금속 복합체 구동기
  • 한동헌# · 최재원#,* · 오승주 · 윤재욱 · 우인선 · 김진아 · 배진우

  • 한국기술교육대학교 에너지신소재화학공학부 미래융합공학전공
    *전주대학교 탄소융합공학과

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Shahinpoor, M.; Bar-Cohen, Y.; Simpson, J. O.; Smith, J. Ionic Polymer-metal Composites (IPMCs) as Biomimetic Sensors, Actuators and Artificial Muscles-a Review. Smart Mater. Struct. 1998, 7, 15-30.
  •  
  • 2. Lee, S. J.; Han, M. J.; Kim, S. J.; Jho, J. Y.; Lee, H. Y.; Kim, Y. H. A New Fabrication Method for IPMC Actuators and Application to Artificial Fingers. Smart Mater. Struct. 2006, 15, 1217-1224.
  •  
  • 3. Lee, J. W.; Kim, W. S.; Yoo, Y. T. Preparation and Actuation Performance of Ionic Polymer-Metal Composite Actuators Based on Nafion-Alumina Composite Membranes. Polym. Korea 2009, 33, 377-383.
  •  
  • 4. Jung, Y. H.; Lee, J. W.; Yoo, Y. T. High-performance Ionic Polymer-metal Composite Actuators Based on Nafion/Conducting Nanoparticulate Electrospun Webs. Polym. Korea 2012, 36, 434-439.
  •  
  • 5. Hao, M.; Wang, Y.; Zhu, Z.; He, Q.; Zhu, D.; Luo, M. A Compact Review of IPMC as Soft Actuator and Sensor: Current Trends, Challenges, and Potential Solutions From Our Recent Work. Front. Robot. AI 2019, 6, 129.
  •  
  • 6. Kengne Fotsing, Y.; Tan, X. Bias-dependent Impedance Model for Ionic Polymer-metal Composites. J. Appl. Phys. 2012, 111, 124907.
  •  
  • 7. Palmre, V.; Hubbard, J. J.; Fleming, M.; Pugal, D.; Kim, S.; Kim, K. J.; Leang, K. K. An IPMC-enabled Bio-inspired Bending/Twisting Fin for Underwater Applications. Smart Mater. Struct. 2013, 22, 014003.
  •  
  • 8. Jeong, H. M.; La, Y. S. The Effect of Crosslinking on the Actuation of Electroactive IPMC Prepared with Fluoroalkyl Methacrylate/Acrylic Acid/HEMA Copolymer. Polym. Korea 2005, 29, 463-467.
  •  
  • 9. Jeong, H. M.; Byung, C. K.; Young, S. la Properties and Performance of Electroactive Acrylic Copolymer-Platinum Composite Modified with Sodium Montmorillonite. Polym. Korea 2005, 29, 380-384.
  •  
  • 10. Cha, G. C.; Song, J. S.; Lee, S. M.; Mun, M. S. Effect of the Surface Electrode Formation Method and the Thickness of Membrane on Driving of Ionic Polymer Metal Composites (IPMCs). Polym. Korea 2006, 30, 471-477.
  •  
  • 11. Song, D. S.; Han, D. G.; Rhee, K.; Kim, D. M.; Jho, J. Y. Fabrication and Characterization of an Ionic Polymer-metal Composite Bending Sensor. Macromol. Res. 2017, 25, 1205-1211.
  •  
  • 12. Tiwari, R.; Kim, K. J. IPMC as a Mechanoelectric Energy Harvester: Tailored Properties. Smart Mater. Struct. 2013, 22, 015017.
  •  
  • 13. Lee, J. W.; Yoo, Y. T. Preparation and Performance of IPMC Actuators with Electrospun Nafion®-MWNT Composite Electrodes. Sens. Actuators B Chem. 2011, 159, 103-111.
  •  
  • 14. Branco, P. J. C.; Dente, J. A. Derivation of a Continuum Model and its Electric Equivalent-circuit Representation for Ionic Polymer-metal Composite (IPMC) Electromechanics. Smart Mater. Struct. 2006, 15, 378-392.
  •  
  • 15. Jung, S. Y.; Park, J. O.; Park, S. Replacement of Surface Roughening Using Polyvinyl Alcohol Coating in the Fabrication of Nafion-based Ionic Polymer Metal Composite (IPMC) Actuators. J. Polym. Res. 2016, 23, 1-6.
  •  
  • 16. Wang, H. S.; Cho, J.; Song, D. S.; Jang, J. H.; Jho, J. Y.; Park, J. H. High-Performance Electroactive Polymer Actuators Based on Ultrathick Ionic Polymer-Metal Composites with Nanodispersed Metal Electrodes. ACS Appl. Mater. Interfaces 2017, 9, 21998-22005.
  •  
  • 17. Noh, T. G.; Tak, Y.; Nam, J. D.; Choi, H. Electrochemical Characterization of Polymer Actuator with Large Interfacial Area. Electrochim. Acta 2002, 47, 2341-2346.
  •  
  • 18. Akle, B. J.; Leo, D. J.; Hickner, M. A.; Mcgrath, J. E. Correlation of Capacitance and Actuation in Ionomeric Polymer Transducers. J. Mater. Sci. 2005, 40, 3715-3724.
  •  
  • 19. Tiwari, R.; Kim, K. J. Effect of Metal Diffusion on Mechanoelectric Property of Ionic Polymer-metal Composite. Appl. Phys. Lett. 2010, 97, 244104.
  •  
  • 20. Aureli, M.; Lin, W.; Porfiri, M. Capacitance Boost in Ionic Polymer Metal Composites Due To Electrode Surface Roughness. Proc. SPIE Conf. on Electroactive Polymer Actuators and Devices (EAPAD)2009, 7287, 72871A.
  •  
  • 21. Porfiri, M. Influence of Electrode Surface Roughness and Steric Effects on the Nonlinear Electromechanical Behavior of Ionic Polymer Metal Composites. Phys. Rev. E 2009, 79, 041503.
  •  
  • 22. Porfiri, M. An Electromechanical Model for Sensing and Actuation of Ionic Polymer Metal Composites. Smart Mater. Struct. 2009, 18, 015016.
  •  
  • 23. Aureli, M.; Lin, W.; Porfiri, M. On the Capacitance-boost of Ionic Polymer Metal Composites Due To Electroless Plating: Theory and Experiments. J. Appl. Phys. 2009, 105, 104911.
  •  
  • 24. Inamuddin; Khan, A.; Luqman, M.; Dutta, A. Kraton Based Ionic Polymer Metal Composite (IPMC) Actuator. Sens. Actuator A Phys. 2014, 216, 295-300.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2022; 46(4): 491-496

    Published online Jul 25, 2022

  • 10.7317/pk.2022.46.4.491
  • Received on Mar 28, 2022
  • Revised on May 15, 2022
  • Accepted on May 18, 2022

Correspondence to

  • Jin Woo Bae
  • Multifunctional Organic Polymer Laboratory, Future Convergence Engineering, School of Energy,
    Materials and Chemical Engineering, Korea University of Technology and Education, Cheonan 31253, Korea

  • E-mail: jwbae@koraetech.ac.kr