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Abstract: A series of conjugated polyelectrolytes (CPEs) based on fluorene named 6,6'-(2-phenyl-9H-fluorene-9,9-
diyl)bis(N,N,N-trimethylhexan-1-aminium) bromide (PFB-Br), 6,6'-(2-(thiophene-2-yl)-9H-fluorene-9,9-diyl)bis(V,N,N-
trimethylhexan-1-aminium) bromide (PFT-Br), and 6,6'-(2-([2,2'-bithiophen]-5-yl)-9H-fluorene-9,9-diyl)bis(NV,N,N-
trimethylhexan-1-aminium) bromide (PF2T-Br) were synthesized and applied as the interlayer to investigate how the
backbone structure influence the photovoltaic properties. The ionic functionality of CPE accumulates on the ZnO surface,
owing to the existing interactions between the ionic groups and the ZnO. The CPE backbone is shifted toward the ZnO
surface. Thus, there is a formation of interface dipole via the re-organization of the ionic side chains and hydrophobic
backbone. However, incorporation of the electron-rich moiety, thiophene, or bithiophene, in the polymer backbone inter-
fere with the electron transport at the cathode interface. As a result, the power conversion efficiency (PCE) of polymer
with thiophene and bithiophene backbone structure was decreased compare with PFB-Br, which has electron-affinity
property than PFT-Br, and PF2T-Br.

Keywords: polymer solar cell, fluorene-based polyelectrolyte, thiophene, cathode interlayer.

ISSN 0379-153X(Print)
ISSN 2234-8077(Online)

Introduction

Polymer solar cells (PSCs) have much appeal due to their
advantages, such as flexibility, lightweight, wide-area appli-
cations, and cost-effectiveness to manufacture. The record
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power conversion efficiency (PCE) have reached over 16%'°
because of the outstanding progress of materials synthesis and
device fabrication. The inverted PSCs (iPSCs) device archi-
tecture is one of the practical approaches to enhance the sta-
bility of the devices, simplify, and lowering the manufacturing
cost.”® In the inverted PSCs, inorganic metal oxide (e.g., TiOx
or zinc oxide) have been used as interfacial layers due to their
capability for improving electron collection and their solution

9-12

processability.”* Moreover, the light intensity in an active
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layer could be redistributed by the inorganic metal oxide, thus
improve the light-harvesting."* The pivotal point to iPSCs per-
formance is the transporting material (interlayer) for electron
transport or hole-blocking layer. The interlayer material should
overcome the formation of Schottky contact between the cath-
ode with LUMO level of the active layer. The HOMO level of
the interlayer should be lower than the HOMO of donor mate-
rial, and the LUMO of the interlayer must be similar to an
acceptor material. The interfacial layer also should not be dis-
solved in the solvent that is used for active layer process-
ing."*!* Thus, many studies try to explore a variety of interlayer
material to modify the energy level and improve its solubility
in MeOH leading to orthogonal solubility with the active
layer.

In the conventional PSCs, poly(3,4-ethylenedioxy thio-
phene): poly(styrene sulfonate) (PEDOT: PSS) is used as an
interface layer to modify the ITO electrode.'*” However, the
use of PEDOT: PSS in the conventional PSCs affects rapid
degradation, a short lifetime, and its acidic and hydrophobic
properties. Also, the low work function of the metal anode is
sensitive to oxygen and moisture.'”"* Whereas the iPSCs allow
the use of less air-sensitive high work function metal, leading
to better device stability, compare to conventional PSCs. Most
of the devices apply ZnO as a passivation layer owing to ZnO
show high performance compare with another interlayer. ZnO
is the right choice for n-type semiconductors due to the low
cost, high stability, facile synthesis, passivating surface defect,
and favorable optical/electronic properties."'?** The work
function of ZnO is 4.40 eV that adequate energy level to lower
the work function of the metal electrode or ITO and com-
patible with the LUMO level of various fullerene active mate-
rial. The modification of ZnO material is still needed due to the
characteristic of binary ZnO and defects within ZnO. The
interface between the organic bulk heterojunction (BHJ) active
layer and inorganic metal oxide ZnO has an unfavorable con-
tact surface, thus limiting the transport efficiency and resulting
in poor short-circuit current density (J,.) and low fill factor
(FF).*% Modification of interfacial engineering in the ZnO
layer is one of the strategies to enhance the PCEs. The surficial
defect on the ZnO layer conquered by applying organic inter-
layer materials such as self-assembled monolayer, ionic liquid
materials, conjugated polymer electrolyte, and fullerene deriv-
atives have been utilized to modify the ZnO layer.”*' Recently,
conjugated polyelectrolyte (CPE) arise as a good design for the
interlayer modifier due to its delocalized n-n conjugated back-
bone with the ionic group. The devices with CPEs as the inter-

layer facilitated the electron transport and collection by the
formation of interface dipole at the ZnO interface, which
improves the device performance. The dipole moment of the
CPE is determined by the spontaneous orientation of the ionic
chain, which reduces the work function of metal oxide cath-
0de.23.32-39

In this work, we fabricated iPSCs by using ZnO film with
CPEs as an interlayer. Interestingly, CPEs on the ZnO surface
re-modulate the interfacial interaction, reducing the energy off-
set and increasing the charge collection capability.””“** The
CPEs in this work are composed of the various backbone
structure by inserting different moieties, including polyfluo-
rene with phenyl (PFB), polyfluorene with thiophene (PFT),
and polyfluorene with bithiophene (PF2T). The CPEs were
designed and synthesized to study the effect of the backbone
structure that could influence the performance of the device.
To avoiding intermixing (orthogonal-solubility) with the active
layer, the polymers have been quaternarized with trimethyl-
amine. Thus, the CPEs can be processed from the alcoholic
solvent. The structure of CPEs have the hydrophobic char-
acteristics in the main chains, and the side chain has hydro-
philic characteristics due to the ionic part at the end of the alkyl
chain. Thus, quaternarized polyfluorene with trimethylamine,
which alters solubility, can be an alternative for increasing
device performance.” Ionic functionalities in the CPEs are
accrued on the ZnO surface owing to attractive interaction
between the ionic salts and the hydrophilic ZnO. This indicates
that the re-organization of CPEs occurs during the formation of
CPE film.* Also, the CPE backbone is directed away from the
ZnO surface. Consequently, there are formation of interface
dipole due to a redistribution of the internal electric field.***
As mentioned above, PFB-Br, PFT-Br, and PF2T-Br have
different electronic properties of backbone, PFT-Br, and
PF2T-Br have more electron-rich backbone than PFB-Br.
Detailed investigations are performed to reveal the effect of
various CPE backbone in iPSCs. As a result, the devices based
on ZnO/CPE improve the power conversion efficiency com-
pared to the device based on ZnO only. The PCE of the
devices with CPE PFB-Br, PFT-Br, and PF2T-Br was 7.98%
(e = 14.6 mA/em?, V,.=0.76 V, FF=67.0%), 7.95% (J,.=
15.9 mA/em?, ¥,.= 0.73 V, FF = 67.9%), and 7.95% (J,. = 15.3
mA/cm?, V,.=0.72 V, FF = 66.1%). The device based on ZnO
has a typical open-circuit voltage (V,.) of 0.76 V, a short-circuit
current density (J,) of 14.6 mA/cm?, and fill factor (FF) of
67.0% and PCE 7.41%. The main contribution for enhancing
the PCE was the improvement of J.
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Results and Discussion

A series of CPEs with a different backbone were synthesized
following modified polymerization procedures (Scheme
S1),7474 details about syntheses and characterization are
given in Supporting Information. The polymerization reaction
was also introduced according to the previous work.* The
chemical structure of quaternarized CPEs was shown in Figure
1, along with the inverted device structure. The optical prop-
erties of the three types of fluorene CPE are shown in Figure
S1. UV-Vis absorption spectra were measured in solution and
film. The absorption onset and absorption maximum of PFB-
Br film appeared at 418 nm and 375 nm, respectively. In the
case of PFT-Br film, the onset and absorption maximum
appeared at 497 nm and 444 nm, respectively. The absorption
maximum of PF2T-Br was shifted to a longer wavelength than
PFB-Br and PFT-Br due to stronger electron-donating prop-
erties of thiophene and bithiophene group. The absorption
maximum of PF2T-Br appeared at 523 nm and the onset at
462 nm. The optical bandgap for PFB-Br, PFT-Br, and PF2T-
Br were 2.97, 2.49, and 2.37 eV, respectively. PFB-Br exhibits
a bigger optical bandgap compare to that of PFT-Br and PF2T-
Br because thiophene and bithiophene group are more electron-
rich than phenyl group.”® The cyclic voltammograms (Figure

(a) Polyelectrolytes

-\+/ N
BrN N{Sr

PF2T-Br

Figure 1. Chemical structure of (a) conjugated polyelectrolytes; (b)
PTB7 and PC;BM,; (c) device architecture of iPSC in this research.
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S2) of the CPEs were measured for estimating the energy lev-
els. The HOMO energy levels of PFB-Br, PFT-Br, and PF2T-
Br were -5.55, -5.36, and -5.22 eV, respectively. The LUMO
levels figured out from the HOMO and the optical band gap were
-2.58, -2.87, and -2.85 eV, respectively. Noticeably, PF2T-Br
exhibits the highest the HOMO level and the lowest LUMO
level due to the electron-rich bithiophene unit in the backbone.
PFB-Br, PFT-Br, and PF2T-Br were applied as the inter-
layer in inverted bulk heterojunction (BHJ) iPSCs with device
configuration ITO/ZnO/CPE/PTB7:PC,;BM/MoO;/Ag. Detailed
fabrication procedures of PSCs are described in Supporting
Information, and the performances of the devices with CPEs as
the interlayer are summarized in Table 1. We investigated the
effect of different backbone functionality on the photovoltaic
properties. Figure 2 shows the current density (J) vs. voltage
curves (V) of PSCs with the optimum condition under AM
1.5G solar illumination at 100 mWem™ and under dark con-
ditions. The performance of the devices with CPEs as inter-
layer exhibited significant enhancement by comparing those of
the device with pristine. The optimum thickness of the inter-
layer showing the best PCE was determined to be 3 nm. In the
device based on pristine ZnO, a typical open-circuit voltage (V)
of 0.76 V, a short-circuit current density (J,;) of 14.6 mAcm?,
and a fill factor (FF) of 67.0% and PCE 7.41%. The PCE of
the devices with CPE PFB-Br, PFT-Br, and PF2T-Br was
7.98% (J,. = 14.6 mA/em?®, V,.=0.76 V, FF = 67.0%), 7.95%
(Je = 15.9mA/cm?, ¥,,=0.73 V, FF =67.9%), and 7.95%
(Je =15.3 mA/ecm?, V,.=0.72 V, FF =66.1%), respectively.
These results showed that the stacked interlayer of ZnO/CPE
gives excellent interface properties. The main contribution for
enhancing the performance of the devices with interlayer was
the improvement of J,.. Regardless of the high HOMO and
LUMO energy level of CPEs, CPEs reduces a Schottky barrier
at the cathode.”*' The solar cell incorporating interlayer of
PFB-Br, PFT-Br, and PF2T-Br, exhibited almost identical
V., and FF except J,.. The performances of the device based
on PFT-Br showed slightly lower than those of the device
based on PFB-Br. However, the PCE of the PSC based on
PF2T-Br exhibited the lowest PCE among the devices.
We performed Kelvin probe microscopy (KPM) measure-
ments to investigate the effect of interlayer on the work func-
tion of ZnO.”*** The charge collection interrupt in the
devices due to a larger Schottky barrier. Therefore, the for-
mation of Ohmic contact is one of the critical factors in achiev-
ing a high J,.. As shown in Figure 3, the work function of ZnO
with PFB-Br, PFT-Br, and PF2T-Br were -4.00, -4.01, and
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Table 1. Photovoltaic Performances of PSCs with the Best PCE. The Averages of 20 Devices are Shown in Parentheses

Thickness Jee Jiceal” o o R’
Interlayer (nm) (mA/em?) (mAJem?) Voe (V) FF (%) PCE (%) (@ cm?)
14.6 0.76 67.0 7.41
None - (14.5) 149 (0.75) (66.8) (7.31) 291
5 nm 15.0 ) 0.75 66.4 7.48 )
(14.9) (0.75) (66.2) (7.43)
15.6 0.74 66.8 7.72
PFB-Br 4nm (15.5) - (0.74) (67.0) (7.69) -
15.9 0.73 68.6 7.98
3 nm (15.8) 15.7 (0.73) (68.3) (7.89) 1.93
5 nm 15.6 ) 0.75 68.1 7.96 )
15.2 0.75 67.3 7.66
PrTBr (1 6 0) (0 73) (67 9) (7 95)
3 nm (15.8) 16.1 (0.73) (67.9) (7.84) 213
5 om 14.4 ] 0.75 65.4 7.04 ]
14.3 0.75 63.6 6.85
PraTBr (15 3) (o 72) (66 1) (7 28)
3nm (152) 155 (0.72) (66.0) (7.20) 2.53
“Calculated from TPCE curves. “Series resistance data are calculated from the device showing the best PCE.
—&—2n0 ' I// ' 309 Znopre-ar (-4.00 eV)
0 —&—ZnO/PFB-Br
— A ZRO/PET-Br ZnO/PFT-Br (-4.01 V) -3.42
< ~ —~—ZnOIPF2T-Br // -3.51 zno/PF2T-Br (4.04 V)
£ 3t B 1 /
S g / -3.96
< 1ot < -4.04 _—
b 3 10° > —_— m
‘® E 10* E’ -4.54 Zn0 E
c i £ 4.4
3 -9 S 10° ) 2 ITO 2 _ﬁ%
z %3 05 0.0 05 1.0 w -5.0 1 4.7 L;':
at> 12} Voltage (V) o -5.09
S MoOg4
8} P = 5.5 o
6.0 -5.81
-18 1 1 1 1
0.0 0.2 0.4 0.6 08 Figure 3. Energy level diagram of materials in this research.
Voltage (V)

Figure 2. Current density—voltage curves of PSCs under illumina-
tion (inset: under dark conditions).

-4.04 eV, respectively, while the work function of ZnO was
-4.4 eV. The change of the ZnO work function after intro-
ducing CPE indicates the reduction of Schottky barrier height
and improvement in J. Herein, it was founded that the J
improvement indicates the formation of favorable interface
dipole. The work function of CPE was slightly different from
PFB-Br, PFT-Br, and PF2T-Br. However, the change in the
work function of ZnO not dependent upon changing the back-
bone structure of CPE. Calculated J data from the IPCE

curves (Figure S3) were coherent with the change J, data
obtained from the devices under 1.0 sun condition.

The R, data were calculated from the inverse slope near the
high current region in the dark J-V curves. The R; value of the
Zn0O, PFB-Br, PFT-Br, and PF2T-Br were 2.91, 1.93, 2.13,
and 2.53 W cm? respectively. The decrease in R, is a vital
point in achieving a high FF.**' As summarized in Table 1, the
devices with CPE display lower the R, than pristine, and PFB-
Br based device displays the lowest R, among PFT-Br and
PF2T-Br based devices. It’s related with the energy barrier at
the interface resulted in higher PCE.**® The R, of PFT-Br and
PF2T-Br are higher than PFB-Br. The trade-off between the

Polym. Korea, Vol. 45, No. 1, 2021
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Figure 4. EIS spectra of the PSCs (inset represents the equivalent

circuit for analysis, R;: Ohmic resistance related to the electrodes

and the bulk, R: resistance related with the interface charge trans-
port, C: capacitance)

benefit of a favorable interfacial dipole and the mismatch of
the backbone structure reduces the efficiency of inserting thio-
phene and bithiophene. PFB-Br, which has high electron-
affinity owing to benzene moiety, shows facile electron col-
lection. On the other hand, PFT-Br and PF2T-Br show inhib-
ited electron collection induced from an abundant electron
density of backbone structure leads to lower PCE compare
with PFB-Br.

The electrical impedance spectroscopy (EIS) under the dark
condition of the devices was performed to investigate the car-
rier transport and recombination. The EIS measurement
showed the Nyquist plots of the PSCs at the V. condition. The
EIS spectra were linearly fitted to calculate the recombination
resistance (R...). The EIS spectra are composed of two depressed
semi-circles. In the plot (Figure 4), a high-frequency region
corresponds to the response of the photoactive layer, while the
lower frequency region corresponds to the response interlayer
electrode.*®* The semi-circle size of EIS relates to the mag-
nitude of R, and the amount of the charge recombination in
PSCs.%% The R,.. of PFB-Br, PFT-Br, and PF2T-Br based
devices were 23.87, 12.47, and 10.65 kW, respectively, and
4.75 kW for the device based on pristine ZnO. The device
based on ZnO with PFB-Br showed the biggest R, indicating
the minimum recombination at the interface among the devices.
The change of R.. coherent with those of the FF of PSCs.

To further investigate the electron injection properties of the
iPSCs with different CPEs, we fabricate a device based on
electron-only with a structure of ITO/ZnO (25 nm)/CPE/PC,BM/

Zay, Al4548 A15, 20213
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Figure 5. Current density vs. voltage curves of the electron-only
devices (inset: with a fitted line, V: applied voltage, Vy;: built-in volt-

age).

0.1

Al (100 nm). The electron mobility was estimated using the
Mott—Gurney equation (Figure 5). The electron mobility of the
electron-only devices with ZnO/PFB-Br, PFT-Br, PF2T-Br
was 3.97x10%, 3.27x10% 2.87x10* cm*V''s!, respectively.
CPEs shows higher electron mobility than the pristine ZnO
(2.1x10* em*V's™). The J,. data of the devices with CPEs
were improved compared to pristine ZnO. Consequently, elec-
tron mobility through the changing of recombination resistance
is derived from the CPE backbone orientation. During the
spin-coating of CPEs, the ionic groups are moved toward the
ZnO layer. In contrast, the hydrophobic part of the polyelec-
trolyte is shifted toward the surface of the active layer.

The V,. and J,. of the devices vs. illumination intensity was
plotted for investigating the charge recombination kinetics.
The V,. vs. light intensity is briefly defined as V. o skT/q In(J).
The J. vs. light intensity is defined as J,. oc I*. Where [/ is the
illumination intensity, &, 7, and ¢ are the Boltzmann constant,
the temperature in Kelvin, and electron charge, respectively.
When o values are nearest or equal to 1, the bimolecular
recombination is dominated in the entire devices under short
circuit conditions. In Figure 6, the value of a based on ZnO/
PFB-Br, PFT-Br, PF2T-Br was 0.99, 0.98, and 0.97, respec-
tively.

In contrast, the a value of the ZnO monolayer was 0.968.
Noticeably, the o value indicated that the modified layer
slightly near to bimolecular recombination. When s value
reaches 2, the devices exhibit dominant trap-assisted recom-
bination. However, if the device exhibits the band-to-band
recombination, then the » value is near unity.*® The s values of
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(a) 10
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Figure 6. (a) J; (b) V. vs. illumination intensity.

the devices with ZnO, ZnO/PFB-Br, ZnO/PFT-Br, and ZnO/
PF2T-Br, were 1.56, 1.57, 1.48, and 1.55, respectively. Most
of the device parameters related to the charge extraction and
recombination of the devices. Those are improved by intro-
ducing the conjugated polyelectrolyte interlayer in ZnO.
Besides, the change in the & and s values of the devices agree
well with the PCE trend of PSCs.”

Conclusions

The inverted PSCs with a blend of PTB7:PC,,BM were fab-
ricated to investigate the effect of CPEs on the devices. The
CPE based on fluorene named PFB-Br, PFT-Br, and PF2T-
Br, which have different backbone structures influence the
electronic and photovoltaic properties. The efficiency of the
device with CPEs as interlayer is higher than the device with-
out CPEs, indicating the reduction of a Schottky barrier. The
ionic pendant and organic backbone structure spontaneously
reorient to ZnO and active layer during the fabrication process,
respectively. Although CPEs has the same ion pendant groups,
the PCE of the PSCs with PFB-Br is higher than those of the
device with PF2T-Br. Whereas, PFB-Br has better electron-
affinity owing to benzene moiety, shows facile electron col-
lection. PF2T-Br show inhibited electron collection induced
from an abundant electron density of backbone structure leads
to lower device efficiency compare with PFB-Br.
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the experimental procedure for the synthesis, measurements,
fabrication of polymer solar cells, UV-Vis spectra, CV, and
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