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Abstract: It has long been known that the behavior of HDPE (high density polyethylene)
and LDPE (low density polyethylene) in various polymer processing operations, is fundamen-
tally different from each other. For example, in melt spinning, the critical draw-down ratio
(rc) causing the onset of draw resonance, has much smaller values for HDPE than those for
LDPE, and also the effect of the material relaxation time (1) on draw resonance is opposite
in HDPE as compared to LDPE. In this paper, we show that these two different modes of
the behavior of HDPE and LDPE can be predicted by using the Hyun’s draw resonance
theory on the spinning of convected Maxwell fluids with the White’s strain-rate dependent
relaxation time model. The Hyun's kinematical wave theory of draw resonance has recently
been confirmed to be correct by the numerical calculation of the pertinent partial derivatives
in the (x,t) coordinate system. The results of these numerical simulation studies will be reported
elsewhere,
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INTRODUCTION

White and his research associates have studied
both theoretically and experimentally the many
behavioral differences among HDPE (high density
polyethylene), LDPE (low density polyethylene),
PP (polypropylene), PS(polystyrene) and others
under various polymer processing conditions,'™®
In order to interpret their interesting experimental
results,they have used,as the constitutive equation,
the model of convected Maxwell fluids(i. e., the
White-Metzner model) along with a strain-rate
dependent relaxation time,

They found that the parameter “a”in their st-
rain rate dependent relaxation time(which indicates
the degree of the effect of the strain-rate on the
material relaxation time), plays a very important
role in distinguishing different polymers according
to their different response to processing and rh-
eological tests.

In particular, Minoshima and White recently
reported'_’ the results of many HDPE and LDPE
samples in their behavior in melt spinning expe-

“_

riments in terms of “a”, rc(critical draw-down
AV,
L

(dimensionless relaxation time or a Weissenberg

ratio at the onset of draw resonance), and

number). In the present article, we explain how
such results can be predicted analytically using
the draw resonance theory by the present author.

The basic idea behind the draw resonance theory
is, as explained in the original paper,“that the
throughput waves travel from the spinneret to
the take-up with a different velocity and a dif-
ferent traveling time (throughput residence time)
from those of the fluid element (threadline resi-
dence time), Hence thus, the onset of draw reso-
nance occurs when twice the throughput residence
time exactly equals the threadline residence time
as the draw-down ratio increases.( A positive wave
and a negative one constitute one complete cycle
of draw resonance in one threadline residence ti-
me.) We have recently confirmed that the above
kinematical criterion of draw resonance is correct,

by numerically calculating all the necessary partial
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derivatives and the through-put wave residence
time in the (x,t) coordinate system instead of(x,
A)system,” We will explain more about this later
in this article,

Since we are interested in the explanation of
the different behavior of HDPE and LDPE in
draw resonance as reported by Minoshima and
White,” we use the same governing equations of
isothermal melt spinning as before” (because we
also used the same convected Maxwell fluids model
then)but with the strain-rate dependent relaxa -
tion time (instead of a constant relaxation time
used before) which includes the parameter “a”.!*~

So our analytical results show that depending
on the value of "a”, not only r. values change but
also the question whether the relaxation time eit-
her stabilizes or destabilizes the melt spinning
(ie., rc either increases or decreases as the relaxa-
tion time increases) is answered. Our results cor-
roborate White's data fairly well.

DERIVATION OF THE RESULTS

First we review the results of Hyun“ which used
a constant relaxation time in the isothermal spin-
ning of convected Maxwell fluids. Then we derive
the analytical results for the same convected
Maxwell fluids spinning using the White's strain-
rate dependent relaxation time,

For the modeling of the system, we assume the
same following conditions as before. 1) The secon-
dary forces such as inertia, surface tension, and
gravity are neglected. 2) The origin of the coor-
dinate system starts at the die swell region. 3) The
velocity distribution across the thread-line corss-
section is uniform. 4) We consider stress, velocity,
and so on, in the axial direction only,

Incorporating the above assumptions, we get
a one-dimensional model which allows the analy-
tical results,

Continuity equation:

(2A) L [athy)
Lot /X ox

Equation of motion:
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Consititutive equation:

\,( g)‘: ’\)t—ZU(; g: )t]=2#( g; )t (3)

g+ A

Multiplying Eq. (1) by, [—a-gATV)—]X , we obtain

a new continuity equation which yields the exp-
ression of the throughput (Av) wave traveling

speed, U,
9 (Av) | o(Av) | _ -
l———at x+u|—lax ]t—o (4

Eq. (5) is further rewritten as follows,

[8(Av)]
UE[B(AV)] _ ox A _
A Ix (8A)
ox /Av
st
(88[: )Av

The denominator in Eq. (6), (_aafi_)Av’ is ob-

tained from the steady state solution of the system
(i.e., when (Av) is held constant) whereas the

av . . .
numerator, (—a—x— ) A S the key partial derivative

we will talk about later,

First the steady state soution from Egs. (1), (2)
and (3) is as follows, (For more details, see Hyun
& Ballman)®

Av=Q=constant, and As = F=constant (7)

and so a=%—=%v (8)

774

= (52)s. a5~ (&) (s
() & (9)

Substituting Eqs. (8) and (9) into Eq. (3), we
get

- 2#% (10)

o v=-3 Gt (11)

where f = g'}%g (12)
Thus ( g:i )s.s.=(—gvx—>Av= g:(

- (13)

Hence, the denominator of Eq. (6) becomes

() (), - (5,
( g:( )Av= _% g; - (kﬁ/\v) (14)

Upon substitution of Egs, (13) and (14) into Eq.
(6), we obtain

UEP(AXW o LS o Al %)A
o ( %i‘ >AV C(k+av)
= (k+A\') <%)A (15)

The throughput wave traveling time from the
spinneret (x=0) to the take-up (x=L), i. e, the
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throughput residence time, is thus

L d L d .
e s =ﬁ (kﬂwz E (16)
ox

Now the fluid element traveling time, i. e,, the
threadline residence time, is calculated by

It dx _f"LIH—Av ,
TL#_./; V o Vo V2 d\’
k 1
=‘—,O(I~T)—-A(1n r) (17)
since from Eq, (11), dx= (k—t—'h~)dw (18)

The expression for £ in Eq. (17) can be obtained
as follows,

Integrating Eq. (18) from x=0 to x=x. we get

X v
f dx= f IH'_/\Vdv, or
0 Vo v

x=k In L4 A (v—v,) (19)
Vo
That at the take-up, x=L, and v=v. r, leads to
L=klnr+Avylr—1), or

=L—M'o(r— 1)

Inr

k (20)

Substitution of Eq. (20) into Eq. (17) produces

*(L'/\V()(l"‘lb)](l‘%)

(4%

+A(Inr) (21)

v Inr

The criterion of the onset of draw resonance
is then expressed as

A (22)

where v_and 7v are given by Eq. (16) and (21),
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respectively, (The case of Newtonian fluids can
be easily recovered by setting A=0 for all the
above equations,)

In order to obtain r=r. from Eq, (22), we need

the expression for (,a\_)A for t, . Previously, we

ox

used a linear approximation, ie.,

COv o vi—Vvo _vo(r—1) o
(Srla= e (23)

Then from Eq. (16) with the substitution of Eq.
(23), we obtain

1 volr—1) Jo k+Av ‘volr—1)
“d _Lins )
[o Vo o %l(r-1) e

Upon substitution of Eq, (21) and (24), the onset
criterion on draw resonance, Eq. (22), becomes

L) [L-ivele-1]{1-1)

ol =1) ~ volln T) Rt
2Ln r)? , 1
or BRI —~[L~/\Vo(r-—1)](l—7>
+ Avo (In r)? (23)
Then A = Avo 2rlln o)f= (=D (26)

L (r=1)[r(nr)*=(r-1)%

This is the result that we previously reported
when we used an approximation shown in Eq.(23).
Before moving to the case of a strain-rate de-
pendent relaxtion time, we consider how to find

the exact value of (i~) unlike the approxi-
Vox JA

mation such as Eq. (23). The answer is the fol-
lowing relation which is derived by the coordinate
transformation from (x,A) to (x,t).
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Thus the numerical simulation of the system
in the (x,t) cordinates, always yields the value

of (%) a. As Denn pointed out,” the above

coordinate trans formation doesn’t hold when

ov ) . - . .
(3{)x=0 (i.e., the vanishing Jacobian), which
happens due to the oscillatory nature of A curves
at any x with respect to t in draw resonance,

However, there are two reasons why we don’t

have to worry about (QA‘) x==0 situations,

\ Ix
1) Numerically we can delete the points of

[ OA
ot J x=0 from the A curves, but still maintain
the plecewise continity of A(x,t) curves,

2) More importantly, since we are interested

(2—3{ . not in U itself, to obtain the value
1
of re applying the criterion for the onset of deaw

in tL= S

resonance(2t; = 71 ), the contribution of the points
of (%Aﬁ )xz() to the value of t_ is zero because

those points make U infinite, which, in turn, makes
1/ U zero,

Therefore, the expression for ( o }A by Eq.

(27) is easily usable in the numerical simulation
which yields the vale of rcat the onset of draw
resonance, We will report the results of the nu-
merical simulation elsewhere, where among other
things, the criterion of draw resonance(ie., Eq.
(22)) is proved, and the linear approximation(i.
e., Eq. (23)) is shown to be a very good one.
Now we take the case of the strain-rate depen-
dent relaxation time ' ” in the spinning of the
convected Maxwell fluids, and obtain the results
similar to Eq., (26). All the governing equations
are the same as those of the case of the constant
relaxation time except the following two modifi-

776

The first is the White's model of the
strain-rate dependent relaxation time for exten-

cations,

sional flow:

Am (2
1+ay3 /\0<_g:?) 8)

n_n

where the parameter “a”indicates the degree
of the strain-rate dependence of the relaxation
time, and for shear flow \g is deleted from the
denominator,

The second change is that # in the right hand

side of Eq.(3) is replaced by Eq.(29)
pw=G A (29)

where 2 is given by Eq. (28), and G=modulus
=constant,

Next, we follow the same procedure as before
to get the results for the onset of draw resonance,

The constitutive equation, Eq. (3), with the
substitution of Egs. (28) and (29), becomes at
steady state

A()

Fo JE\( o
(«Q v+ 1+ay 3 A (av/ax)t V(Q)( ox /)t
Fio [ ov
‘2(6)\ 5 )t]
Cov A
- 2(;( 7> 0 or
Tax Ut —. v
1+a 3 /\u<‘aT)t
ij_ e A()\-—AO\—ZGAO(%H=0(3(»)
. dv V
he - . .
Then = W 2GIQ/F) Fv (1=av 3]
v _ )
AWKy (l-ay 3] (3D
where K =204 (32)
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oA\ dA A dv
Also, ( ox )Avg dx  V dx
A ye
Xl K-+v (1—av3) ] (33)
.
A )
d T= — ox Ai
and U ey Ao
ox /Av
[Ktv(1—aV3) ] (-95), (34)

Here we again as before use the approximation
oV fav ) L V.(r-1)

0 (e () emll
(34) because we want to derive analytical results

, for

and we also know this approximation is very close
to the exact numerical solution at the onset of
draw resonance.

Hence, U= ao[K-+v (1—-ay3) %=1

L |
and so, t.= f dx hﬁ\dﬂrl))

fL_ dx
0 QlK+v(1-aV3) ]

_ L f“"- dv__
volr—1) Jvg V

since from Eq.(31),

L(in r)
Vo(l""l )

(35)

dx dv

1—av3) | A%

Ao[K+v (1

We can see that the expression of Eq. (35) is
the same as Eq, (24), which implies that if we
v
(25,
then the throughput wave traveling time becomes

adopt a constant approximation for

identical for all fluids: independent of the material
functions such as A and “a”.
In order to find the expression for 7., we again

Z2lH A127) 483 198851 129

Relaxation Time

use Eq. (31).

v dv

f dx =f\L,\O[ K+v (1 —avaS_) |
/\(3K lwi)+,\0(1~a\/—3)ln r (36)
Vo r

Finally, we substitute Egs. (36) and (35) into
Eq. (22) to get the relation between r and A.

2L | AK 1
Vo (ri{) :) <17v>

+rll—a¥y3)inr (37)

where K is obtained as follows.
From Eq. (31), integration leads to

f e Qlﬁ_\%:_aﬁu dv . or
. .
.
x=h K In 42 (1-ad3) (vovel  (38)
'O

Then at the take-up, x=L and v =v.r,
we get Eq.(39)

L=X[K Inr+{1—ay3) voir—1)] , or

[L—2A(1—ay3 ) velr—1)] (39

e ln r

Upon substitution of Eq. (39) into Eq. (37),
we obtain the final result.
2Lnre 1 1y a0-

volr—1) velnr

\/ﬁ ) Vo

cop i b aa-adiime v

20n r)* (0 1Y Aeve /
=l el )

{ (Inr)*—(r- 1>(17J..w (40)
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Then *X— - AoVo
0 L

2r(n r)?—(r—1)°?
M—av3 ) (c—1) [r(n )’ (r_1)7] 4D

Comparing this with the case of the constant
relaxation time shown in Eq. (26), we can see that

the only difference is the factor 1 __
Y 1-a73)

the case of strain-rate dependent relaxation time.

DISCUSSION

However, the plot of r ve A according to Eq.
(41) is quite different from that by Eq. (26). Fig,
| is the case of the constant relaxtion time by Eq.
(26), and Fig, 2 shows the results by Eq. (41),
Obviouly, the case of a=() in Fig. 2 represents the
case in Fig. 1.

Unlike the curve in Fig. 1 representing the case
of the constant relaxation time, Fig. 2 shows two
different modes of behavior of draw resonance of
the convected Maxwell fluids spinning depending
on the value of “a” in that for the fluids having

a<1/y3<0.577, Fig. 1 type curves are obtain-
ed, whereas for the fluids having a>1/y 3 diffe-

10°

Unatttainable

Draw-down ratio, r
—
o
r

Unstable
(draw resonance)

Stable

10! .
10 °® 10 * 10

Relaxatiion time, ’/\Vr —’\Lyﬂ

Fig. 1. Stability region for the spinning of Maxwell
fluids.

~]
~1
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rent type of curves where redecreases with the inc

~ A
rea-sing A = v

4

In other words, the effect of

the relaxation time on the onset of draw reson
ance is opposite to each other depending upon the
value of “a"

According to the reports by White. et. al) ™"

LDPE melts generally belong to the group 1 fluids

»”

having lower “a” values (a{l/ v3), whereas
HDPE melts belong to the group [l fluids having

"

higher “a” values (a>1 / v'3). Thus we can expect
that Fig. 1 type behavior is exhibited by LDPE,
while the behavior like the lower curves in Fig,
2 can be found with HDPE,

Specifically, the recent results by Minoshima
and White * revealed larger values of rcfor LDPE
(material having a lower“a”value) and smaller
values of r. for HDPE (material having a higher

“a"value) at the onset of draw resonance, The re-
sults also showed that the dimensionles relaxation

,
/

time, A = A stabilizes the spinning of LDPE,
and destabiizes that of HDPE., (Namely, with
the increasing, X rc increases for LDPE and dec-
reases for HDPE). So the effect of the material

relaxation time, A, and of the spinning condition
=4

\o\\
©
o ,&\.0&
> ) a 1:v3
\\809

10 Wf?\
\

10°

—_
<

Draw-down ratio, r

Stable

10°° 10 * 10 10

Relaxation time, Ao — ')““_V"

Fig. 2. Stability region for the spinning of Maxwell

fluids having varying relaxation times
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(i. e, v and L here) on the onset of draw resonan-
ce, was shown Lo be opposite to each other depen-

ding upon whether the fluid belongs to group I
(a<<1/V3 )or group ll (a>1/¢3 |

Hence, the predicted behavior of draw resonance
shown in Fig. 2 corroborates their data fairly well.
Their data also show that not all LDPE / HDPE
san 'cs belong to group 1/ group [l, respectively
and some samples definitely show the opposite
behavior. So in this article, we use the words of
LDPE /HDPE in the sense that they strictly
represent group I/ group |l fluids, respectively
and not to mean to cover all kinds of LDPE / -
HDPE samples exhibiting the opposite behavior,
Some similar results have been reported using a
more complex model than ours through a nume-

. C LoD
rical calculation.

CONCLUSIONS

The simple model of the spinning of convected
Maxwell fluids with the White's strain-rate depen-
dent relaxation time, readily produces two diffe-
rent modes of behavior at the onset of draw reso-
nance depending on the value of the material
parameter *53” when we use the Hyun's kinematical
draw resonance theory. This parametera imbedded
in White's relaxation time model, representing the
strain-rate dependence of the material relaxation
time, dichotomizes the fluids into group I type
and group [I type fluids. The fact that in general,
LDPE belongs to the group I and HDPE to the
group [, yields a good agreement between our
theoretically predicted results and Minoshima and
White's experimental data.

The Hyun's draw resonance theory has recently
been confirmed to be correct by numerically cal-
culating the through-put wave velocity (ie., th-
roughput residence time) and the fluid element
velocity (ie., threadline residence time) in the
(x.1) coordinate system, and then comparing them
in the draw resonance criterion equation,

We also used the linear approximation of the

Z2|0f Al2¥) A18E 1988% 124

key partial derivative, (%) A which turns out

to be a very accurate one at the onset of draw
resonance, Then we were able to obtain analytical
results involving re, A, “a” and so forth, unlike
other numerical studies,

Therefore, is utility of our approximation

( %\;— ) A that we can easily check the experimen-
i /

15,06
" of the system

tal data with known physics
(i.c., the concept of wave residence time) without
going through complex numerical calculations,

because of the analytical nature of our results,

Other polymer processing operations M are
amenable to our approximate yet accrate method
which produces analytical results. Of course, the
pursuit of more accurate constitutive models(e.
g., multiple relaxation times, power-law type vis-
cosity and so on) to characterize many real poly-
mers, should be continued for the sake of the
advancement of polymer rheology, but the power
of analytical results is always indefatigable,

NOTATION

A=threadine cross-sectional area

A,=threadine cross-sectional area at x=0

A, =threadine cross-sectional area at x=L

a=the material parameter of fluids as defined
by Eq.(28)

F=threadline tension

G=material modulus

K=2GQ/F

k=21Q/F

L=distance from the spinneret to the take-up

Q=throughput=A v

r=draw-down ratio

rc=critical draw-down ratio at the onset of draw
resonance

t=time

t,=throughput traveling (residence) time

U=throughput wave velocity

V=threadline (fluid) velocity
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Vo=threadline (fluid) velocity at x=0
Vi=threadline (fluid) velocity at x=L

x =distance from the spinneret

X =relaxation time of Maxwell fluids

X =dimensionless relaxation time=Ax Vo /L
Ao=constant relaxation time of A, when a=0
Xo=dimensionless relaxation time=i, Vo / L
/¢ =VISCOSItY

0 =stress

TL =threadline traveing (residence) time
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