Synthesis of Conjugated Oligomer Based on Benzothiadiazole and Its Application of Organic Solar Cells

Woon Shin, Youn Hwan Kim, Nadhila Sylvianti, Mutia Anissa Marsya, Devi Saskia Putri, Doo Kyung Moon*, and Joo Hyun Kim†

Department of Polymer Engineering, Pukyong National University, Busan 48547, Korea
*Department of Materials Chemistry and Engineering, Konkuk University, Seoul 05029, Korea

(Received June 19, 2016; Revised July 12, 2016; Accepted July 16, 2016)

Abstract: Acceptor (A) - donor (D) - acceptor (A) type conjugated small molecule based on 2,1,3-benzothiadiazole and silofluorene (2,7-bis[5-(7-methyl-benzo[1,2,5]thiadiazol-4-yl)-thiophene-2-yl]-9-(9,9-dioctyl)-9H-silofluorene, SiF-BT) is synthesized for application in organic solar cells (OSCs). Even though two thiophene rings are introduced as the π-extender, SiF-BT exhibits a wide band gap of 2.26 eV due to weak intramolecular charge transfer between SiF and BT. The HOMO and LUMO energy levels of SiF-BT figured out from the cyclic voltammogram and UV-Visible spectrum are -5.43 and -3.17 eV, respectively. Optimized OSCs with a blend of SiF-BT:PC71BM (3:6) exhibits a power conversion efficiency (PCE) of 0.53% with a short-circuit current density of -2.06 mA/cm², fill factor of 29.8%, and open-circuit voltage of 0.90 V.

Keywords: conjugated oligomer, silofluorene, benzothiadiazole, organic solar cell.

Introduction

Researches on organic solar cells have been increased due to their high promising low cost production and high performance that comes from organic semiconducting material. Organic semiconductors are promising materials to explore because of their potential applications in organic electronic devices, such as organic solar cells (OSCs), organic light-emitting diodes (OLEDs), and organic field-effect transistors (OFETs). Among them, blending a semiconducting material as the electron donor (D) and a soluble fullerene derivatives as the electron acceptor (A), bulk hetero-junctions (BHJs), present the efficient structure for OSCs because of broadened interfacial electron donor and electron acceptor contacting area in which D and A materials form interpenetrated networks. Recently, conjugated oligomers based OSCs are continuously gaining attention as they offer several advantages and promising results for the OSCs. Compared with conjugated polymers, conjugated oligomers are highly pure, with well-defined structure and high degree of crystallinity, which could improve fabrication reproducibility and prevent batch-to-batch variations. Combining electron donor units with high HOMO/ LUMO level and electron withdrawing units with low HOMO/
LUMO level is necessary to decrease the band gap. Most of electron donor units are alkylated fused-ring derivatives based on fluorene, carbazole, and thiophene. Oligomers based on fluorene moiety have been studied in organic electronic devices due to their stable thermal and chemical stability, high molar extinction coefficients and efficient light harvesting properties could be great potential to increase the power conversion efficiency (PCE). Silofluorene (SiF) is gaining attention due to their unique electronic structure and has a low lying LUMO. Another advantage is silicon atom can stabilize the HOMO levels compared to the carbon counterparts. For the electron withdrawing moiety, 2,1,3-benzothiadiazole derivatives are commonly used as the A because coupling with D units especially in the BHJ solar cells exhibits the high PCE. We synthesized an A-D-A type oligomer containing a central SiF unit as the electron D and 2,1,3-benzothiadiazole (BT) derivative as the electron A as their implementation as donor material in organic solar cells, which is 2,7-bis[5-(7-methyl-benzo[1,2,5]thiadiazol-4-yl)-thiophen-2-yl]-9-(9,9-dioctyl)-9H-silofluorene (SiF-BT) (Scheme 1).

Experimental

Materials. PC$_71$BM (Cat No. nano-cPCBM-SF) was purchased from nano-C, Inc. 4-bromo-7-methyl-benzo[1,2,5]thiadiazole (1) and 2,7-dibromo-9,9-dioctyl-9H-dibenzosilole were synthesized according to the literature procedures.

Synthesis of 2,7-bis[5-(7-methyl-benzo[1,2,5]thiadiazol-4-yl)-thiophen-2-yl]-9-(9,9-dioctyl)-9H-silofluorene (SiF-BT) (Scheme 1). Here, we report the synthesis, characterization, optical properties, and photovoltaic properties of OSCs based on SiF-BT.

Scheme 1. Synthesis of SiF-BT and its chemical structure.
1H), 2.74 (s, 3H). 13C NMR (100 MHz, CDCl$_3$, ppm): δ 156.25, 153.44, 140.06, 138.37, 130.50, 128.28, 127.94, 126.63, 126.04, 125.31, 17.96. Anal Calcd. For. C$_{8}$H$_{8}$BrN$_{5}$S$_{2}$: C, 42.45; H, 2.27; N, 9.00; S, 20.61. Found: C, 42.37; H, 2.20; N, 9.16; S, 20.28.

Synthesis of 2,7-bis[5-(7-methyl-benzo[1,2,5]thiadiazol-4-yl)-thiophen-2-yl]-9-(9,9-dioctyl)-9H-silofluorene (SiF-BT).

A mixture of compound (3) (0.747 g, 2.40 mmol) (9-(9,9-dioctyl)-2,7-bis(4,4,5,5-tetramethyl-[1,3]dioxolan-2-yl)-9H-silofluorene (0.658 g, 1.00 mmol), 5% mol of tetrakis(triphenylphosphine) palladium [Pd(PPh$_3$)$_4$] (0.058 g, 0.050 mmol), and several drops of aliquat. 336 in 20 mL of degassed 1:1 (by volume) mixed solvent of toluene and 2 M K$_2$CO$_3$ aqueous was stirred for 30 min at 60 °C prior to deposition. The thin film of ZnO precursor was cured at 200 °C for 10 min to partly crystallize the ZnO film. The active layer was spincast from the blend solution of donor and PC$_{70}$BM (donor and PC$_{70}$BM dissolve in 1 mL of chloroform at 600 rpm for 60 s). Prior to spin coating, the active solution was filtered through a 0.2 nm membrane filter. The typical thickness of an active layer was 80 nm. On the top of the active layer, a 20 nm-thick MoO$_3$ layer and 100 nm-thick Ag layer were thermally evaporated successively through a shadow mask with a device area of 0.13 cm2 at 2×10$^{-6}$ Torr.

Results and Discussion

Synthesis and Characterization of SiF-BT. As shown in Scheme 1, compound 2 was synthesized by the Stille coupling reaction between compound 1 and tributyl-thiophen-2-yl-stannane. SiF-BT was synthesized by the Suzuki coupling reaction between one equivalent of 2,7-dibromo-9,9-dioctyl-9H-dibenzoisole (4) and two equivalent of compound 3. Strong electron accepting and donating groups have been introduced to lower the band gap by the intramolecular charge transfer (ICT). The structures of all synthesized compounds were confirmed by 1H NMR, 13C NMR, elemental analysis (EA), and MASS. Thermal behavior was investigated by differential scanning calorimetry (DSC). Crystallization and melting process showed at 85 and 137 °C, respectively (Figure 1(a)). SiF-BT exhibits good solubility in chlorinated hydrocarbon solvents such as chloroform and chlorobenzene.

Figure 1(b) shows the UV-Visible spectra of SiF-BT in chloroform solution and in thin film. SiF-BT exhibit two broad absorption bands at a shorter wavelength region (shorter than 400 nm) and a longer wavelength region (410 – 600 nm). The former and latter correspond to π-π* transition and the typical intramolecular charge transfer (ICT), respectively.
Synthesis of Conjugated Oligomer Based on Benzothiadiazole and Its Application of Organic Solar Cells

The absorption band of SiF-BT film at longer wavelength region are 20 nm red-shifted compared to that of solution, whereas the absorption maximum of film at shorter wavelength region film is almost identical to that of solution. A shoulder at 488 nm is appeared in the absorption spectrum of SiF-BT film, indicating the formation of the intermolecular aggregation, i.e. increase of molecular interaction in the solid state film. The molar extinction coefficients (ε) of SiF-BT is estimated to be $3.96 \times 10^4 \text{M}^{-1}\text{cm}^{-1}$ in solution spectrum.

The HOMO energy level of SiF-BT was measured by cyclic voltammetry (CV). As shown in Figure 2(a), SiF-BT shows two reversible oxidation processes at 0.71 and 0.89 V vs ferrocene (Fc/Fc$^+$). From the oxidation onset potential, the HOMO level of SiF-BT is estimated to be -5.43 eV. The optical band gap energy was estimated from the absorption edge of SiF-BT film (548 nm), which corresponds to 2.26 eV. Even though two thiophene rings are introduced as the π-extender, SiF-BT exhibits a pretty wide band gap. This may due to weak ICT between SiF and BT. The LUMO energy level of SiF-BT was calculated using the HOMO energy level and the optical band gap obtained from UV-visible absorption edge was -3.17 eV. The energy levels of SiF-BT, PC$_{71}$BM and other materials used in this research were illustrated in Figure 2(b). They can provide sufficient driving forces for the efficient operation of solar cells through the facile exciton dissociation as well as energetically favored charge transfer process.

Photovoltaic Properties. Performances of OSCs based on SiF-BT and PC$_{71}$BM (or PC$_{61}$BM) were measured in the inverted type OSCs with a structure of ITO/ZnO (25 nm)/

![Figure 1.](image1.png)
(a) DSC thermogram; (b) UV-Visible spectrum of SiF-BT solution in chloroform and film.

![Figure 2.](image2.png)
(a) Cyclic voltammogram of SiBT-BT; (b) the energy level diagrams of the components in the device.

Table 1. Best Photovoltaic Parameters of OSCs. The Averages for the Photovoltaic Parameters of Each Device are Given in Parentheses

<table>
<thead>
<tr>
<th>Blend ratioa</th>
<th>J_{sc} (mA/cm2)</th>
<th>V_{oc} (V)</th>
<th>FF (%)</th>
<th>PCE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:3</td>
<td>0.31 (0.30)</td>
<td>0.97 (0.84)</td>
<td>22.1</td>
<td>0.07 (0.06)</td>
</tr>
<tr>
<td>3:6</td>
<td>1.30 (1.15)</td>
<td>0.91 (0.85)</td>
<td>31.0</td>
<td>0.37 (0.29)</td>
</tr>
<tr>
<td>3:9</td>
<td>1.13 (1.15)</td>
<td>0.85 (0.81)</td>
<td>31.9</td>
<td>0.31 (0.19)</td>
</tr>
</tbody>
</table>

aMass ratio of donor to PC$_{61}$BM.
donor: PC$_7$BM (or PC$_{61}$BM)/MoO$_3$ (20 nm)/Ag (100 nm). In order to optimize device test and fabrication conditions, the photovoltaic parameters (Table 1) were preliminary tested with different blend ratios of SiF-BT and PC$_{61}$BM from 3:3 to 3:9 (w/w). On the basis of the testing results, we fabricated and tested the devices with blend ratio of SiF-BT and PC$_7$BM from 3:2 to 3:6 (w/w). The current density (J) – voltage (V) curves of the devices under AM 1.5 G simulated illumination are shown in Figure 3(a) and the photovoltaic parameters are summarized in Table 2.

The PCE of the devices were 0.12–0.53%, which depends on the blend ratio. In addition, the V_{oc}, J_{sc}, and FF of the devices were 0.90–1.01 V, 0.53–2.06 mA/cm2, and 23.4–29.8%, respectively. The best blend ratio between SiF-BT and PC$_7$BM having the best PCE appeared at 3:6. The series resistance (R_s) was calculated from the inverse slope near the high current regime of the J–V curves under dark condition and the results were listed in Table 2. The R_s data are good correlated with the PCE and the FF data of the devices.

To investigate charge transporting properties of the active layer through the space charge limited current (SCLC) methods, the hole- and electron-only devices with a structure of ITO/PEDOT:PSS (35 nm)/SiF-BT:PC$_{71}$BM (3:6) (80–120 nm)/Au (50 nm) and ITO/ZnO (25 nm)/SiF-BT:PC$_7$BM (3:6) (70–100 nm)/Al (100 nm), respectively, were prepared. Above the built-in electric field (as shown in Figure 4), the current density
Figure 5. IPCE spectra of OSC based on SiF-BT:PC\textsubscript{60}BM (3:6).

and electric field is characteristic of SCLC. This can be fitted by the Mott-Gurney law:

\[J = \frac{9}{8\varepsilon_0\varepsilon_r\mu} \frac{E^2}{L} \]

where \(J \) is the current density, \(\mu \) is the charge mobility, \(E \) is the electric field, \(\varepsilon_0\varepsilon_r \) is the permittivity the active layer, \(L \) is the thickness of the active layer, respectively. Using \(\varepsilon_r=3.9, 27 \) the current density and electric field relationship of the device agree well with Mott-Gurney Law. The hole and electron mobility of the device are \(2.02\times10^{-4} \) and \(1.58\times10^{-5} \) cm\(^2\)V\(^{-1}\)s\(^{-1}\), respectively.

Incident photon conversion efficiency (IPCE) was measured for the corresponding best device to verify the accuracy of the measurements. As shown in Figure 5, the devices show typical IPCE curves from 300 to 800 nm. The maximum IPCE of the device with SiF-BT:PC\textsubscript{60}BM (3:6) shows at 490 nm. Estimated \(J_{sc} \) value from the IPCE spectra is 2.23 mA/cm\(^2\), which is agree well with the \(J_{sc} \) value of under the 1.0 sun condition.

Conclusions

A new A-D-A type conjugated small molecule based on 2,1,3-benzothiadiazole and silofluorene (SiF-BT) has been synthesized successfully. According to the DSC thermogram, crystallization and melting process showed at 85 and 137 °C, respectively. Glass transition process did not appear up to 200 °C. All the compounds in this research were well characterized by NMR, MASS, and EA. Even though two thiophene rings are introduced as the \(\pi \)-extender, SiF-BT exhibits a wide band gap of 2.26 eV. The HOMO and LUMO energy levels of SiF-BT figured out from the CV and UV-Visible spectrum are -5.43 and -3.17 eV, respectively. Optimized OSCs with a blend of SiF-BT:PC\textsubscript{60}BM (3:6) exhibit a power conversion efficiency (PCE) of 0.53% with a short-circuit current density of -2.06 mA/cm\(^2\), fill factor of 29.8%, and open-circuit voltage of 0.90 V.

Acknowledgements: This work was supported by the New & Renewable Energy Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (20153010140030).

References