Supporting Information

Filamentous Virus-Templated Nickel Hydroxide Nanoplates as Novel Electrochemical Pseudocapacitor Materials

Manoj Mayaji Ovhal¹, Hock Beng Lee¹, Neetesh Kumar¹, Jin-Woo Oh², and Jae-Wook Kang^{1*}

¹Department of Flexible and Printable Electronics, LANL-JBNU Engineering Institute-Korea, Jeonbuk National University, Jeonju, 54896, Republic of Korea.

²Department of Nano Fusion Technology, Department of Nanoenergy Engineering, Research Center for Energy Convergence and Technology, Pusan National University, Busan, 46241, Republic of Korea

* Corresponding author: Prof. Jae-Wook Kang

E-mail: jwkang@jbnu.ac.kr

Figure S1 Preferential growth of the Ni(OH)₂ unit cell along the (001) planes.

Figure S2 AFM micrograph of pristine M13 bacteriophage on glass.

Figure S3 Electrochemical performance of Ni(OH)₂ electrode (a) CV curves at different scan rates and (b) GCD curve at different current densities, and M13-Ni(OH)₂ electrode (c) CV curves at different scan rates and (d) GCD curves at different current densities.