• Pyrolysis of Waste Tires in a Fixed Bed Reactor: Influence of Additive on Sulfur Content in Pyrolysis Oil
  • Su-Hyeon Choi*, ** , Jong-Su Kim*, Hyung-Jin Kim*, Chang-Yong Kim***, Yong-Tae Joo***, Myung-Won Seo**, and Soo-Hwa Jeong*,†

  • *Low-Carbon Emission Control R&D Department, Korea Institute of Industrial Technology,
    89 Yangdaegiro-gil, Ipjang-myeon, Seobuk-gu, Cheonan-si, Chungcheongnam-do 31056, Korea
    **Department of Environmental Engineering, University of Seoul, 163 University of Seoul, Seoulsiripdaero, Dongdaemun-gu, Seoul 02504, Korea
    ***Sustainable Materials Research Team, Hyundai Motor Company 37, Cheoldobangmulgwan-ro, Uiwang-si, Gyeonggi-do 16082, Korea

  • 고정층 반응기를 활용한 폐타이어 열분해: 첨가제에 따른 열분해 오일 내 황 성분 거동의 변화
  • 최수현*, ** · 김종수* · 김형진* · 김창용*** · 주용태*** · 서명원** · 정수화*,†

  • *한국생산기술연구원 저탄소배출제어연구부문, **서울시립대학교 환경공학과, ***현대자동차 친환경소재연구팀

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Korea Tire Manufacturers Association (KOTMA), https://kotma.co.kr (accessed Jan 22, 2025).
  •  
  • 2. Quek, A.; Balasubramanian, R. Liquefaction of Waste Tires by Pyrolysis for Oil and Chemicals - A Review. J. Anal. Appl. Pyrolysis. 2013, 101, 1-16.
  •  
  • 3. Martínez, J. D.; Puy, N.; Murillo, R.; García, T.; Navarro, M. V.; Mastral, A. M. Waste Tyre Pyrolysis–A Review. Renew. Sustain. Energy Rev. 2013, 23, 179-213.
  •  
  • 4. Zhang, G.; Chen, F.; Zhang, Y.; Zhao, L.; Chen, J.; Cao, L.; Xu, C. Properties and Utilization of Waste Tire Pyrolysis Oil: A Mini Review. Fuel Process. Technol. 2021, 211, 106582.
  •  
  • 5. Hoang, A. T.; Nguyen, T. H.; Nguyen, H. P. Scrap Tire Pyrolysis as a Potential Strategy for Waste Management Pathway: a Review. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2020, 15, 6305-6322.
  •  
  • 6. Unapumnuk, K.; Lu, M.; Keener, T. C. Carbon Distribution From the Pyrolysis of Tire-derived Fuels. Ind. Eng. Chem. Res. 2006, 45, 8757-8764.
  •  
  • 7. Williams, P. T. Pyrolysis of Waste Tyres: A Review. Waste Manag. 2013, 33, 1714-1728.
  •  
  • 8. Cunliffe, A. M.; Williams, P. T. Composition of Oils Derived From the Batch Pyrolysis of Tyres. J. Anal. Appl. Pyrolysis. 1998, 44, 131-152.
  •  
  • 9. Wang, W. C.; Bai, C. J.; Lin, C. T.; Prakash, S. Alternative Fuel Produced From Thermal Pyrolysis of Waste Tires and Its Use in a DI Diesel Engine. Appl. Therm. Eng. 2016, 93, 330-338.
  •  
  • 10. Czajczyńska, D.; Krzyżyńska, R.; Jouhara, H.; Spencer, N. Use of Pyrolytic Gas From Waste Tire as a Fuel: A Review. Energy, 2017, 134, 1121-1131.
  •  
  • 11. Kim, D.; Han, M.; Kim, N.; Kim, J.; Jung, S. P. Waste Plastic Pyrolysis Industry: Current Status and Prospects. J. Korean Soc. Environ. Eng. 2024, 46, 395-407.
  •  
  • 12. Sharuddin, S. D. A.; Abnisa, F.; Daud, W. M. A. W.; Aroua, M. K. A Review on Pyrolysis of Plastic Wastes. Energy Convers. Manag. 2016, 115, 308-326.
  •  
  • 13. Papuga, S. V.; Gvero, P. M.; Vukić, L. M. Temperature and Time Influence on the Waste Plastics Pyrolysis in the Fixed Bed Reactor. Therm. Sci. 2016, 20, 731-741.
  •  
  • 14. Milne, B. J.; Behie, L. A.; Berruti, F. Recycling of Waste Plastics by Ultrapyrolysis Using an Internally Circulating Fluidized Bed Reactor. J. Anal. Appl. Pyrolysis. 1999, 51, 157-166.
  •  
  • 15. Hall, W. J.; Williams, P. T. Pyrolysis of Brominated Feedstock Plastic in a Fluidized Bed Reactor. J. Anal. Appl. Pyrolysis. 2006, 77, 75-82.
  •  
  • 16. Wang, B.; Fu, Y.; Zheng, H.; Zeng, D.; Xiao, R. Catalytic and Noncatalytic Fast Pyrolysis of Waste Tires to Produce High-value Monocyclic Aromatic Hydrocarbons. J. Anal. Appl. Pyrolysis. 2021, 156, 105131.
  •  
  • 17. Choi, G. G.; Oh, S. J.; Kim, J. S. Non-catalytic Pyrolysis of Scrap Tires Using a Newly Developed Two-stage Pyrolyzer for the Production of a Pyrolysis Oil with a Low Sulfur Content. Appl. Energy, 2016, 170, 140-147.
  •  
  • 18. Jeong, J.; Lee, U.; Chang, W.; Oh, M.; Jeong, S. Energy Recovery via Pyrolysis of Waste Tire Rubber: Desulfurization Effect of Pyrolysis Oil by Adding Waste Polypropylene. J. Energy Eng.-ASCE, 2017, 26, 97-104.
  •  
  • 19. Kordoghli, S.; Khiari, B.; Paraschiv, M.; Zagrouba, F.; Tazerout, M. Impact of Different Catalysis Supported by Oyster Shells on the Pyrolysis of Tyre Wastes in a Single and a Double Fixed Bed Reactor. Waste Manag. 2017, 67, 288-297.
  •  
  • 20. Chen, Q.; Xu, F.; Zong, P.; Song, F.; Wang, B.; Tian, Y.; Qiao, Y. Influence of CaO on the Thermal Kinetics and Formation Mechanism of High Value-Added Products During Waste Tire Pyrolysis. J. Hazard. Mater. 2022, 436, 129220.
  •  
  • 21. Čepić, Z.; Mihajlović, V.; Đurić, S.; Milotić, M.; Stošić, M.; Stepanov, B.; Ilić Mićunović, M. Experimental Analysis of Temperature Influence on Waste Tire Pyrolysis. Energies, 2021, 14, 5403.
  •  
  • 22. Menares, T.; Herrera, J.; Romero, R.; Osorio, P.; Arteaga-Pérez, L. E. Waste Tires Pyrolysis Kinetics and Reaction Mechanisms Explained by TGA and Py-GC/MS Under Kinetically-controlled Regime. Waste Manag. 2020, 102, 21-29.
  •  
  • 23. Danon, B.; Mkhize, N. M.; Van Der Gryp, P.; Görgens, J. F. Combined Model-free and Model-based Devolatilisation Kinetics of Tyre Rubbers. Thermochim. Acta. 2015, 601, 45-53.
  •  
  • 24. Zhang, R.; Wang, H.; Ji, J.; Suo, Z.; Ou, Z. Influences of Different Modification Methods on Surface Activation of Waste Tire Rubber Powder Applied in Cement-based Materials. Constr. Build. Mater. 2022, 314, 125191.
  •  
  • 25. Ding, K.; Zhong, Z.; Zhang, B.; Song, Z.; Qian, X. Pyrolysis Characteristics of Waste Tire in An Analytical Pyrolyzer Coupled With Gas Chromatography/mass Spectrometry. Energy Fuels, 2015, 29, 3181-3187.
  •  
  • 26. Li, C.; Liu, Z.; Yu, J.; Hu, E.; Zeng, Y.; Tian, Y. Cross-interaction of Volatiles in Fast Co-pyrolysis of Waste Tyre and Corn Stover via TG-FTIR and Rapid Infrared Heating Techniques. Waste Manag. 2023, 171, 421-432.
  •  
  • 27. Wang, Z.; Wu, M.; Chen, G.; Zhang, M.; Sun, T.; Burra, K. G.; Gupta, A. K. Co-pyrolysis Characteristics of Waste Tire and Maize Stalk Using TGA, FTIR and Py-GC/MS Analysis. Fuel, 2023, 337, 127206.
  •  
  • 28. Čepić, Z.; Mihajlović, V.; Đurić, S.; Milotić, M.; Stošić, M.; Stepanov, B.; Ilić Mićunović, M. Experimental Analysis of Temperature Influence on Waste Tire Pyrolysis. Energies, 2021, 14, 5403.
  •  
  • 29. Dewi, W. N.; Zhou, Q.; Mollah, M.; Yang, S.; Ilankoon, I. M. S. K.; Chaffee, A.; Zhang, L. Synergistic Interaction Between Scrap Tyre and Plastics for the Production of Sulphur-free, Light Oil From Fast Co-pyrolysis. Waste Manag. 2024, 179, 99-109.
  •  
  • 30. Venturelli, M.; Falletta, E.; Pirola, C.; Ferrari, F.; Milani, M.; Montorsi, L. Experimental Evaluation of the Pyrolysis of Plastic Residues and Waste Tires. Appl. Energy, 2022, 323, 119583.
  •  
  • 31. Kaminsky, W.; Sinn, H. Pyrolysis of Plastic Waste and Scrap Tires Using a Fluidized-bed Process. In Thermal Conversion of SolidWastes and Biomass; Jones, J. L., Radding, S. B., Takaoka, S., Baekens, A. G., Eds.; ACS: Washington D.C., 1980; pp 423-439.
  •  
  • 32. Agnihotri, R.; Chauk, S. S.; Mahuli, S. K.; Fan, L. S. Mechanism of CaO Reaction with H2S: Diffusion Through CaS Product Layer. Chem. Eng. Sci. 1999, 54, 3443-3453.
  •  
  • 33. Cao, C.; Ren, Y.; Wang, H.; Hu, H.; Yi, B.; Li, X.; Yao, H. Insights Into the Role of CaO Addition on the Products Distribution and Sulfur Transformation During Simulated Solar-powered Pyrolysis of Waste Tires. Fuel, 2022, 314, 122795.
  •  
  • 34. Williams, P. T.; Besler, S. Pyrolysis-thermogravimetric Analysis of Tyres and Tyre Components. Fuel, 1995, 74, 1277-1283.
  •  
  • 35. Pakdel, H.; Roy, C.; Aubin, H.; Jean, G.; Coulombe, S. Formation of Dl-limonene in Used Tire Vacuum Pyrolysis Oils. Environ. Sci. Technol. 1991, 25, 1646-1649.
  •  
  • 36. Kruželák, J.; Sýkora, R.; Hudec, I. Sulphur and Peroxide Vulcanisation of Rubber Compounds–overview. Chem. Pap., 2016, 70, 1533-1555.
  •  
  • 37. Ye, W.; Xu, X.; Zhan, M.; Huang, Q.; Li, X.; Jiao, W.; Yin, Y. Formation Behavior of PAHs During Pyrolysis of Waste Tires. J. Hazard. Mater. 2022, 435, 128997.
  •  
  • 38. Mirmiran, S.; Pakdel, H.; Roy, C. Characterization of Used Tire Vacuum Pyrolysis Oil: Nitrogenous Compounds from the Naphtha Fraction. J. Anal. Appl. Pyrolysis, 1992, 22, 205-215.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2024 Impact Factor : 0.6
  • Indexed in SCIE

This Article

  • 2025; 49(4): 435-443

    Published online Jul 25, 2025

  • 10.7317/pk.2025.49.4.435
  • Received on Dec 10, 2024
  • Revised on Jan 23, 2025
  • Accepted on Mar 5, 2025

Correspondence to

  • Soo-Hwa Jeong
  • Low-Carbon Emission Control R&D Department, Korea Institute of Industrial Technology,
    89 Yangdaegiro-gil, Ipjang-myeon, Seobuk-gu, Cheonan-si, Chungcheongnam-do 31056, Korea

  • E-mail: pysoo80@kitech.re.kr