• Characteristics of Waxy Oil from Waste High-Density Polyethylene via In-Situ Catalytic Pyrolysis
  • Joo-Hyeong Yoon , Jong-Su Kim, Hyeong-Jin Kim, and Soo-Hwa Jeong

  • Korea Institute of Industrial Technology (KITECH), 89 Yangdaegiro-gil, Ipjang-myeon, Seobuk-gu, Cheonan-si 31056, Korea

  • In-situ 방식 촉매 열분해를 통한 폐 HDPE으로부터의 Waxy Oil의 특성 연구
  • 윤주형 · 김종수 · 김형진 · 정수화

  • 한국생산기술연구원 저탄소배출제어부문

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Kibria, M. G.; Masuk, N. I.; Safayet, R.; Nguyen, H. Q.; Mourshed M. Plastic Waste: Challenges and Opportunities to Mitigate Pollution and Effective Management. Int. J. Environ. Res. 2023, 17, 20.
  •  
  • 2. Kumar, R.; Verma, A.; Shome, A.; Sinha, R.; Sinha, S.; Jha, P.K.; Kumar, R.; Kumar, P.; Shubham; Das, S.; Sharma, P. Impacts of Plastic Pollution on Ecosystem Services, Sustainable Development Goals, and Need to Focus on Circular Economy and Policy Interventions. Sustainability, 2021, 13, 9963.
  •  
  • 3. Geyer, R. Production, Use, and Fate of Synthetic Polymers, Academic Press: Cambridge, 2020.
  •  
  • 4. R. Geyer, J. R. Jambeck, K. L. Law, Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782.
  •  
  • 5. Evode, N.; Qamar, S.A.; Bilal, M.; Barceló, D.; Iqbal, H. M. N. Evaluation of Emerging Pollutants in Environmental Engineering. Case Stud. Chem. Environ. Eng. 2021, 4, 100142.
  •  
  • 6. Al-Fatesh, A. S.; Al-Garadi, N. Y. A.; Osman, A. I.; Al-Mubaddel, F. S.; Ibrahim, A. A.; Khan, W. U.; Alanazi, Y. M.; Alrashed, M. M.; Alothman, O. Y. From Plastic Waste Pyrolysis to Fuel: Impact of Process Parameters and Material Selection on Hydrogen Production. Fuel, 2023, 344, 128107.
  •  
  • 7. Yang, M.; Chen, L.; Wang, J.; Msigwa, G.; Osman, A. I.; Fawzy, S.; Rooney, D. W.; Yap, P. S. Circular Economy Strategies for Combating Climate Change and Other Environmental Issues. Environ. Chem. Lett. 2023, 21, 55-80.
  •  
  • 8. Alhazmi, H.; Almansour, F. H.; Aldhafeeri, Z. Plastic Waste Management: A Review of Existing Life Cycle Assessment Studies. Sustainability, 2021, 13, 5340.
  •  
  • 9. Walendziewski, J. Continuous Flow Cracking of Waste Plastics. Fuel Process. Technol. 2005, 86 1265-1278.
  •  
  • 10. Orozco, S.; Lopez, G.; Suarez, M. A.; Artetxe, M.; Alvarez, J.; Bilbao, J.; Olazar, M. Analysis of Hydrogen Production Potential from Waste Plastics by Pyrolysis and in Line Oxidative Steam Reforming. Fuel Process. Technol. 2022, 225, 107044.
  •  
  • 11. Abbas-Abadi, M. S.; Ureel, Y.; Eschenbacher, A.; Vermeire, F. H.; Varghese, R. J.; Oenema, J.; Stefanidis, G. D.; Van Geem, K. M. Challenges and Opportunities of Light Olefin Production via Thermal and Catalytic Pyrolysis of End-of-life Polyolefins: Towards Full Recyclability. Prog. Energy Combust. Sci. 2023, 96, 101046.
  •  
  • 12. Russell, J. M.; Gracida-Alvarez, U. R.; Winjobi, O.; Shonnard, D. R. Update to “Effect of Temperature and Vapor Residence Time on the Micropyrolysis Products of Waste High Density Polyethylene. Ind. Eng. Chem. Res. 2020, 59, 10716-10719.
  •  
  • 13. Tran, X. T.; Kim, E. S.; Mun, D. H.; Jung, T.; Shin, J.; Kang, N. Y.; Park, Y.-K.; Kim, D. K. Catalytic Cracking of Crude Waste Plastic Pyrolysis Oil for Enhanced Light Olefin Production in a Pilot-Scale Circulating Fluidized Bed Reactor. ACS Sustain. Chem. Eng. 2024, 12, 12493-12503.
  •  
  • 14. Abdy, C.; Zhang, Y.; Wang, J.; Yang, Y.; Artamendi, I.; Allen, B. Pyrolysis of Polyolefin Plastic Waste and Potential Applications in Asphalt Road Construction: A Technical Review. Resour. Conserv. Recycl. 2022, 180, 106213.
  •  
  • 15. Hussain, I.; Ganiyu, S. A.; Alasiri, H.; Alhooshani, K. A State-ofthe-art Review on Waste Plastics-derived Aviation Fuel: Unveiling the Heterogeneous Catalytic Systems and Techno-economy Feasibility of Catalytic Pyrolysis. Energy Convers. Manage. 2022, 274, 116433.
  •  
  • 16. Papari, S.; Bamdad, H.; Berruti, F. Pyrolytic Conversion of Plastic Waste to Value-Added Products and Fuels: A Review. Materials, 2021, 14, 2586.
  •  
  • 17. Al-Salem, S. M.; Yang, Y.; Wang, J.; Leeke, G. A. Pyro-Oil and Wax Recovery from Reclaimed Plastic Waste in a Continuous Auger Pyrolysis Reactor. Energies, 2020, 13, 2040.
  •  
  • 18. Mohanty, A.; Ajmera, S.; Chinnam, S.; Kumar, V. Pyrolysis of Waste Oils for Biofuel Production: An Economic and Life Cycle Assessment. Fuel Commun. 2024, 18, 100108.
  •  
  • 19. Murti, Z.; Sinaga, R. Y. H.; Mulyono, M.; Otivriyanti, G.; Steven, S.; Wardani, M. L. D.; Laili, N. S. S.; Yustisia A.; Soekotjo, E. S. A.; Lukitari, V.; Sudiono, M.; Soedarsono, A.; Dewanti, D. How Important is the Life Cycle Assessment (LCA) Study of Plastic Waste? Use of Bibliometric Analysis to Reveal Research Positions and Future Directions. J. Teknol. Lingkungan, 2024, 25, 10-19.
  •  
  • 20. Didier P. Recycled Polymers: Eco-Design, Structure/Property Relationships and Compatibility, MDPI book: Basel, 2024.
  •  
  • 21. Valizadeh, S.; Valizadeh, B.; Seo, M. W.; Choi, Y. J.; Lee, J.; Chen, W. H. Recent Advances in Liquid Fuel Production from Plastic Waste via Pyrolysis: Emphasis on Polyolefins and Polystyrene. Environ. Res. 2024, 246, 118154.
  •  
  • 22. Liu, L.; Barlaz, M. A.; Johnson, J. X. Johnson, Economic and Environmental Comparison of Emerging Plastic Waste Management Technologies. Resour. Conserv. Recycl. 2024, 205, 107531.
  •  
  • 23. Maniscalco, M.; Paglia, F. L.; Iannotta P.; Caputo, G.; Scargiali, F.; Grisafi, F.; Brucato, A. Slow pyrolysis of an LDPE/PP mixture: Kinetics and process performance. J. Energy Inst. 2021, 96, 234-241.
  •  
  • 24. Al-Salem, S. M.; Dutta, A. Wax Recovery from the Pyrolysis of Virgin and Waste Plastics. Ind. Eng. Chem. Res. 2021, 60, 8301-8309.
  •  
  • 25. Saeaung K.; Phusunti, N.; Phetwarotai, W.; Assabumrungrat, S.; Cheirsilp, B. Catalytic Pyrolysis of Petroleum-based and Biodegradable Plastic Waste to Obtain High-value Chemicals. Waste Manag. 2021, 127, 101-111.
  •  
  • 26. Kremer, I.; Tomić, T.; Katančić, Z.; Erceg, M.; Papuga, S.; Vuković, J.P.; Schneider, D. R. Catalytic Pyrolysis of Mechanically Non-recyclable Waste Plastics Mixture: Kinetics and Pyrolysis in Laboratory-scale Reactor. J. Environ. Manage. 2021, 296, 113145.
  •  
  • 27. Wang, Y.; Cheng, L.; Gu, J.; Zhang, Y.; Wu, J.; Chen, Y.; Yuan, H. Catalytic Pyrolysis of Polyethylene for the Selective Production of Monocyclic Aromatics over the Zinc-Loaded ZSM-5 Catalyst. ACS Omega, 2022, 7, 2752-2765.
  •  
  • 28. Neuner, P.; Graf, D.; Netsch, N.; Zeller M.; Herrmann T.-C.; Stapf D.; Rauch, R. Chemical Conversion of Fischer–Tropsch Waxes and Plastic Waste Pyrolysis Condensate to Lubricating Oil and Potential Steam Cracker Feedstocks. Reactions, 2022, 3, 352-373.
  •  
  • 29. Vieira de Souza, C.; Corrêa, S. M. Polycyclic Aromatic Hydrocarbons in Diesel Emission. Diesel Fuel and Lubricant Oil. Fuel, 2016, 185, 925-931.
  •  
  • 30. Abidin M. R. S. Z.; Noh, M. H.; Moniruzzaman, M.; Goto M. Evaluation of Crude Oil Wax Dissolution Using a HydrocarbonBased Solvent in the Presence of Ionic Liquid. Processes 2023, 11, 1112.
  •  
  • 31. Chaudhari, U. S.; Kulas, D. G.; Umlor, L.; Cronan, A.; Peralta, A.; Hossain, T.; Handler, R. M.; Johnson, A. T.; Reck, B. K.; Thompson, V. S.; Hartley, D. S.; Watkins, D. W.; Shonnard, D. R. Liquid Fed Pyrolysis of Polyethylene Films: Environmental and Economic Assessments of Co-located and Remotely-Located U.S. Facilities. ACS Sustainable Resour. Manage. 2024, 11, 1112.
  •  
  • 32. Sarker, M.; Rashid, M. M.; Molla, M.; Rahman, M. S. Un-ProportionalMunicipal Waste Plastic Conversion into Fuel Using Activated Carbon and HZSM-5 Catalyst. J. Appl. Chem. Sci. 2012, 4, 1-8.
  •  
  • 33. Vellaiyan, S. Aljohani, K.; Aljohani, B. S.; Reddy, B. R. S. R. Enhancing Waste-derived Biodiesel Yield Using Recyclable Zinc Sulfide Nanocatalyst: Synthesis, Characterization, and Process Optimization. Results Eng. 2024, 23, 102411.
  •  
  • 34. Al-Asadi, M.; Miskolczi, N.; Eller, Z. Pyrolysis-gasification of Wastes Plastics for Syngas Production Using Metal Modified Zeolite Catalysts Under Different Ratio of Nitrogen/oxygen. J. Clean. Prod. 2020, 271, 102411.
  •  
  • 35. Vaishnavi, M.; Vasanth, P. M.; Rajkumar, S.; Gopinath, K. P.; Devarajan, Y. A Critical Review of the Correlative Effect of Process Parameters on Pyrolysis of Plastic Wastes. J. Anal. Appl. Pyrolysis, 2023, 170, 105907.
  •  
  • 36. Kusenberg, M.; Zayoud, A.; Roosen M.; Thi, H. D.; Abbas-Abadi, M. S.; Eschenbacher, A.; Kresovic, U.; Meester, S. D.; Geem, K. M. V. A Comprehensive Experimental Investigation of Plastic Waste Pyrolysis Oil Quality and its Dependence on the Plastic Waste Composition. Fuel Process. Technol. 2022, 277, 107090.
  •  
  • 37. Qiu, L.; Murashov, V.; White, M. A. Zeolite 4A: Heat Capacity and Thermodynamic Properties. Solid State Sci. 2000, 2, 841-846.
  •  
  • 38. Zasypalov, G. O.; Klimovsky, V. A.; Abramov, E. S.; Brindukova, E. E.; Stytsenko, V. D.; Glotov, A. P. Hydrotreating of Lignocellulosic Bio-Oil (A Review). Petrol. Chem. 2024, 63 1143-1169.
  •  
  • 39. Beltrão-Nunes, A.-P.; Pires, M.; Roy, R.; Azzouz, A. Surface Basicity and Hydrophilic Character of Coal Ash-Derived Zeolite NaP1 Modified by Fatty Acids. Molecules, 2024, 29, 768.
  •  
  • 40. Moghaddam, A. L.; Ghavipour, M.; Kopyscinski, J.; Hazlett M. J. Methanol Dehydration to Dimethyl Ether over KFI Zeolites. Effect of Template Concentration and Crystallization Time on Catalyst Properties and Activity. Appl. Catal. A: Gen. 2024, 672, 119594.
  •  
  • 41. Netsch, N.; Vogt, J.; Richter, F.; Straczewski, G.; Mannebach, G.; Fraaije, V.; Mihan, S.; Stapf, I. D.; Tavakkol, S. Chemical Recycling of Polyolefinic Waste to Light Olefins by Catalytic Pyrolysis. Chem. Ing. Tech. 2023, 95, 1305-1313.
  •  
  • 42. Mastral, F. J.; Esperanza, E.; Garcia, P.; Juste, M. Pyrolysis of High-density Polyethylene in a Fluidised Bed Reactor. Influence of the Temperature and Residence Time. J. Anal. Appl. Pyrolysis 2002, 63, 1-15.
  •  
  • 43. Kassargy, C.; Awad, S.; Burnens, G.; Kahine, K.; Tazerout, M. Experimental Study of Catalytic Pyrolysis of Polyethylene and Polypropylene over USY Zeolite and Separation to Gasoline and Diesel-like Fuels. J. Anal. Appl. Pyrolysis 2017, 127, 31-37.
  •  
  • 44. Li, C.; Zhang, C.; Gholizadeh, M.; Hu, X. Different Reaction Behaviours of Light or Heavy Density Polyethylene During the Pyrolysis with Biochar as the Catalyst. J. Hazard. Mater. 2020, 399, 123075.
  •  
  • 45. Rodríguez-Luna, L.; Bustos-Martínez, D.; Valenzuela, E. TwoStep Pyrolysis for Waste HDPE Valorization. Process Saf. Environ. Prot. 2021, 149, 526-536.
  •  
  • 46. Santos, E.; Rijo, B.; Lemos, F.; Lemos, M. A. A Catalytic Reactive Distillation Approach to High Density Polyethylene Pyrolysis - Part 2 - Middle Olefin Production. Catalysis Today, 2021, 379, 212-221.
  •  
  • 47. Matar, S.; Hatch, L. F. Chemistry of Petrochemical Processes, Gulf Professional Publishing: Houston, 2001.
  •  
  • 48. Dry, M. E. Sasol’s Fischer-Tropsch Experience. Hydrocarbon Processing, 1982, 61, 121.
  •  
  • 49. Zacharopoulou, V.; Lemonidou A. A. Olefins from Biomass Intermediates: A Review. Catalysts, 2018, 8, 2.
  •  
  • 50. Gray, M. R.; McCaffrey, W. C. Role of Chain Reactions and Olefin Formation in Cracking, Hydroconversion, and Coking of Petroleum and Bitumen Fractions. Energy & Fuels 2002, 16, 756-766.
  •  
  • 51. Singh, O.; Khairun, H. S.; Joshi, H.; Sarkar, B.; Gupta, N. K. Advancing Light Olefin Production: Exploring Pathways, Catalyst Development, and Future Prospects. Fuel, 2024, 379, 132992.
  •  
  • 52. Sonawane, Y. B.; Shindikar, M. R.; Khaladkar, M. Y. Effect of Fly Ash in Pyrolysis of HDPE, LDPE, and PP Plastic Waste. Nat. Environ. Pollut. Technol. 2024, 23, 1735-1742.
  •  
  • 53. G. Ali Mansoori, H. Lindsey Barnes, Glenn M. Webster. Chapter 4: Petroleum Waxes, In Fuels and Lubricants Handbook: Technology, Properties, Performance, and Testing, Totten, G. E. Shah, R. J., Forester, D. R., Eds.; ASTM International: West Conshohcken, 2019; pp 79-113.
  •  
  • 54. Freund, M.; Csikós, R.; Keszthelyi, S.; Mózes, G. Paraffin Products: Properties, Technologies, Applications. Developments in Petroleum Series. Elsevier: Amsterdam, 1982.
  •  
  • 55. Scaffaro, R.; Mantia, F.; Botta, L.; Morreale, M.; Dintcheva, N.; Mariani, P. Competition Between Chain Scission and Branching Formation in the Processing of High-Density Polyethylene: Effect of Processing Parameters and of Stabilizers. Polym. Eng. Sci. 2009, 49, 1316-1325.
  •  
  • 56. Zou, L.; Xu, R.; Wang, H.; Wang, Z.; Sun, Y.; Li, M. Chemical Recycling of Polyolefins: A Closed-Loop Cycle of Waste to Olefins. Natl. Sci. Rev. 2023, 10, nwad207.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2024 Impact Factor : 0.6
  • Indexed in SCIE

This Article

  • 2025; 49(5): 579-593

    Published online Sep 25, 2025

  • 10.7317/pk.2025.49.5.579
  • Received on Feb 7, 2025
  • Revised on Mar 25, 2025
  • Accepted on Apr 14, 2025

Correspondence to

  • Soo-Hwa Jeong
  • Korea Institute of Industrial Technology (KITECH), 89 Yangdaegiro-gil, Ipjang-myeon, Seobuk-gu, Cheonan-si 31056, Korea

  • E-mail: pysoo80@kitech.re.kr