• Influence of Rheological Properties on the Structural and Mechanical Characteristics of Pitch-Based Carbon Fibers
  • Byungwook Youn, Yangyul Ju, Hae Reum Shin*, Kwang Youn Cho*,† , Man Tae Kim*,† , and Doo Jin Lee

  • Department of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Korea
    *Aerospace&Defense R&D Group, Korea Institute of Ceramic Engineering and Technology, 101 Soho-ro, Jinju 52851, Korea

  • 피치계 탄소섬유의 유변학적 거동과 섬유의 구조적 및 기계적 특성 상관관계 분석
  • 윤병욱 · 주양율 · 신해름* · 조광연*,† · 김만태*,† · 이두진

  • 전남대학교 고분자공학과, *한국세라믹기술원 항공복합소재센터

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. MInus, M.; Kumar, S. The Processing Properties, and Structure of Carbon Fibers. Jom 2005, 57, 52-58.
  •  
  • 2. Frank, E.; Steudle, L. M.; Ingildeev, D.; Spörl, J. M.; Buchmeiser, M. R. Carbon Fibers: Precursor Systems, Processing, Structure, and Properties. Angew. Chem. Int. Ed. 2014, 53, 5262-5298.
  •  
  • 3. Paiva, J. M. F. de; Santos, A. D. N. dos; Rezende, M. C. Mechanical and Morphological Characterizations of Carbon Fiber Fabric Reinforced Epoxy Composites Used in Aeronautical Field. Mat. Res. 2009, 12, 367-374.
  •  
  • 4. Huang, X. Fabrication and Properties of Carbon Fibers. Materials 2009, 2, 2369-2403.
  •  
  • 5. Newcomb, B. A. Processing, Structure, and Properties of Carbon Fibers. Compos. Ptart A: Appl. Sci. Manuf. 2016, 91, 262-282.
  •  
  • 6. Hameed, N.; Sharp, J.; Nunna, S.; Creighton, C.; Magniez, K.; Jyotishkumar, P.; Salim, N. V; Fox, B. Structural Transformation of Polyacrylonitrile Fibers During Stabilization and Low Temperature Carbonization. Polym. Degrad. Stabil. 2016, 128, 39-45.
  •  
  • 7. Naito, K.; Tanaka, Y.; Yang, J.-M.; Kagawa, Y. Tensile Properties of Ultrahigh Strength PAN-based, Ultrahigh Modulus Pitch-based and High Ductility Pitch-based Carbon Fibers. Carbon 2008, 46, 189-195.
  •  
  • 8. Jana, A.; Zhu, T.; Wang, Y.; Adams, J. J.; Kearney, L. T.; Naskar, A. K.; Grossman, J. C.; Ferralis, N. Atoms to Fibers: Identifying Novel Processing Methods in the Synthesis of Pitch-based Carbon Fibers. Sci. Adv. 2022, 8, eabn1905.
  •  
  • 9. Naito, K.; Yang, J.-M.; Xu, Y.; Kagawa, Y. Enhancing the Thermal Conductivity of Polyacrylonitrile-and Pitch-based Carbon Fibers by Grafting Carbon Nanotubes on Them. Carbon 2010, 48, 1849-1857.
  •  
  • 10. Kim, J.; Im, U.-S.; Lee, B.; Peck, D.-H.; Yoon, S.-H.; Jung, D.-H. Pitch-based Carbon Fibers From Coal Tar or Petroleum Residue Under the Same Processing Condition. Carbon Lett. 2016, 19, 72-78.
  •  
  • 11. Shi, K.; Yang, J.; Li, J.; Zhang, X.; Wu, W.; Liu, H.; Yoon, S.-H.; Li, X. Effect of Oxygen-introduced Pitch Precursor on the Properties and Structure Evolution of Isotropic Pitch-based Fibers During Carbonization and Graphitization. Fuel Process. Technol. 2020, 199, 106291.
  •  
  • 12. Liu, J.; Chen, X.; Liang, D.; Xie, Q. Development of Pitch-based Carbon Fibers: A Review. Energy Sources, Part A-Recovery, Util. Enviro. Eff. 2024, 46, 14492-14512.
  •  
  • 13. Li, Q.; Zuo, P.; Qu, S.; Shen, W. Evolution of the Composition and Melting Behavior of Spinnable Pitch during Incubation. Molecules 2023, 28, 1097.
  •  
  • 14. Lu, M.; Liao, J.; Gulgunje, P. V; Chang, H.; Arias-Monje, P. J.; Ramachandran, J.; Breedveld, V.; Kumar, S. Rheological Behavior and Fiber Spinning of Polyacrylonitrile (PAN)/Carbon Nanotube (CNT) Dispersions at High CNT Loading. Polymer 2021, 215, 123369.
  •  
  • 15. Münstedt, H. Rheological Properties and Molecular Structure of Polymer Melts. Soft Matter 2011, 7, 2273-2283.
  •  
  • 16. Jiang, Z.; Zhang, Y.; Ding, L.; Balogun, M.-S.; Ouyang, T. J Controllable Pre-oxidation Strategy Toward Achieving High Compressive Strength in Self-bonded Carbon Fiber Monolith. J. Mater. Sci. 2023, 58, 1059-1070.
  •  
  • 17. Kil, H.-S.; Jang, S. Y.; Ko, S.; Jeon, Y. P.; Kim, H.-C.; Joh, H.-I.; Lee, S. Effects of Stabilization Variables on Mechanical Properties of Isotropic Pitch Based Carbon Fibers. J. Ind. Eng. Chem. 2018, 58, 349-356.
  •  
  • 18. Niu, H.; Zuo, P.; Shen, W.; Qu, S. A Comprehensive Investigation on the Chemical Structure Character of Spinnable Pitch for Improving and Optimizing the Oxidative Stabilization of Coal Tar Pitch-based Fiber. Polymer 2021, 224, 123737.
  •  
  • 19. Harrell, T. M.; Scherschel, A.; Love‐Baker, C.; Tucker, A.; Moskowitz, J. D.; Li, X. Influence of Oxygen Uptake on Pitch Carbon Fiber. Small 2023, 19, 2303527.
  •  
  • 20. Wang, H.; Yang, J.; Li, J.; Shi, K.; Li, X. Effects of Oxygen Content of Pitch Precursors on the Porous Texture and Surface Chemistry of Pitch-based Activated Carbon Fibers. SN Appl. Sci. 2019, 1, 248.
  •  
  • 21. Kim, B.-J.; Eom, Y.; Kato, O.; Miyawaki, J.; Kim, B. C.; Mochida, I.; Yoon, S.-H. Preparation of Carbon Fibers With Excellent Mechanical Properties From Isotropic Pitches. Carbon 2014, 77, 747-755.
  •  
  • 22. Cato, A. D.; Edie, D. D. Flow Behavior of Mesophase Pitch. Carbon 2003, 41, 1411-1417.
  •  
  • 23. Gold, B. J.; Hövelmann, C. H.; Lühmann, N.; Pyckhout-Hintzen, W.; Wischnewski, A.; Richter, D. The Microscopic Origin of the Rheology in Supramolecular Entangled Polymer Networks. J. Rheol. 2017, 61, 1211-1226.
  •  
  • 24. Yoon, H.; Hinton, Z. R.; Heinzman, J.; Chase, C. E.; Gopinadhan, M.; Edmond, K. V; Ryan, D. J.; Smith, S. E.; Alvarez, N. J. The Effect of Pyrolysis on the Chemical, Thermal and Rheological Properties of Pitch. Soft Matter 2021, 17, 8925-8936.
  •  
  • 25. Choi, J.; Lee, Y.; Chae, Y.; Kim, S.-S.; Kim, T.-H.; Lee, S. Unveiling the Transformation of Liquid Crystalline Domains Into Carbon Crystallites During Carbonization of Mesophase Pitch-derived Fibers. Carbon 2022, 199, 288-299.
  •  
  • 26. Song, Y.; Joo, Y. J.; Ju, Y.; Youn, B.; Shin, D. G.; Cho, K. Y.; Lee, D. Polycrystalline Nanograin Formation in Uniform-sized Silicon Carbide Fibers Derived From Aluminum-containing Polycarbosilane. Fiber. Polym. 2023, 24, 3151-3161.
  •  
  • 27. Rani, S.; Kumari, K.; Kumar, P.; Dhakate, S. R.; Kumari, S. Enhancing Spinnability and Properties of Carbon Fibers Through Modification of Isotropic Coal Tar Pitch Precursor. J. Anal. Appl. Pyrolysis 2024, 181, 106566.
  •  
  • 28. Qian, Z.; McKenna, G. B. Expanding the Application of the Van Gurp-Palmen Plot: New Insights into Polymer Melt Rheology. Polymer 2018, 155, 208-217.
  •  
  • 29. Trinkle, S.; Friedrich, C. Van Gurp-Palmen-plot: A Way to Characterize Polydispersity of Linear Polymers. Rheol. Acta 2001, 40, 322-328.
  •  
  • 30. Ji, H. S.; Park, G.; Jung, H. W. Rheological Properties and Melt Spinning Application of Controlled-Rheology Polypropylenes via Pilot-Scale Reactive Extrusion. Polymers 2022, 14, 3226.
  •  
  • 31. Nair, S. T.; Vijayan, P. P.; Xavier, P.; Bose, S.; George, S. C.; Thomas, S. Selective Localisation of Multi Walled Carbon Nanotubes in Polypropylene/natural Rubber Blends to Reduce the Percolation Threshold. Compos. Sci. Technol. 2015, 116, 9-17.
  •  
  • 32. Karaaslan, M. A.; Gunning, D.; Huang, Z.; Ko, F.; Renneckar, S.; Abdin, Y. Carbon Fibers from Bitumen-derived Asphaltenes: Strategies for Optimizing Melt Spinnability and Improving Mechanical Properties. Carbon 2024, 228, 119300.
  •  
  • 33. Banerjee, C.; Chandaliya, V. K.; Dash, P. S. Recent Advancement in Coal Tar Pitch-based Carbon Fiber Precursor Development and Fiber Manufacturing Process. J. Anal. Appl. Pyrolysis 2021, 158, 105272.
  •  
  • 34. Lee, S. M.; Lee, S. H.; Jung, D.-H. Surface Oxidation of Petroleum Pitch to Improve Mesopore Ratio and Specific Surface Area of Activated Carbon. Sci Rep. 2021, 11, 1460.
  •  
  • 35. Kim, M. Il; Seo, S. W.; Kwak, C. H.; Cho, J. H.; Im, J. S. The Effect of Oxidation on the Physical Activation of Pitch: Crystal Structure of Carbonized Pitch and Textural Properties of Activated Carbon After Pitch Oxidation. Mater. Chem. Phys. 2021, 267, 124591.
  •  
  • 36. Lim, T. H.; Yeo, S. Y. Investigation of the Degradation of Pitch-based Carbon Fibers Properties Upon Insufficient or Excess Thermal Treatment. Sci Rep. 2017, 7, 4733.
  •  
  • 37. Kwon, W.; Jeong, E. Adsorptive Removal of Nerve Gas via Activated Carbon Fiber: Precursor and Fabric Structure Effects. Mater. Chem. Phys. 2024, 323, 129651.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2024 Impact Factor : 0.6
  • Indexed in SCIE

This Article

  • 2025; 49(5): 610-617

    Published online Sep 25, 2025

  • 10.7317/pk.2025.49.5.610
  • Received on Mar 10, 2025
  • Revised on Apr 22, 2025
  • Accepted on Apr 22, 2025

Correspondence to

  • Kwang Youn Cho* , Man Tae Kim* , and Doo Jin Lee
  • Department of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Korea
    *Aerospace&Defense R&D Group, Korea Institute of Ceramic Engineering and Technology, 101 Soho-ro, Jinju 52851, Korea

  • E-mail: kycho@kicet.re.kr, ginggiscan@kicet.re.kr, dlee@chonnam.ac.kr