• Study on Electron Beam Irradiation Dose Prediction Method for the Synthesis of Gold Nanoparticles Stabilized with Polymers
  • Hong-Ki Choi, In-Tae Hwang, Junhwa Shin, Jong-Hyun Jung, Hyun-Bin Kim, and Chan-Hee Jung

  • Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Jeollabuk-do 56212, Korea

  • 고분자로 안정화된 금 나노입자 합성을 위한 전자선 조사 선량 예측방법 연구
  • 최홍기 · 황인태 · 신준화 · 정종현 · 김현빈 · 정찬희

  • 한국원자력연구원 첨단방사선연구소

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Stark, W. J.; Stoessel, P. R.; Wohlleben, W.; Hafner, A. Industrial Applications of Nanoparticles. Chem. Soc. Rev. 2015, 44, 5793-5805.
  •  
  • 2. Ndolomingo, M. J.; Bingwa, N.; Meijboom, R. Review of Supported Metal Nanoparticles: Synthesis Methodologies, Advantages and Application as Catalysts. J. Mater. Sci. 2020, 55, 6195-6241.
  •  
  • 3. Draz, M. S.; Shafiee, H. Applications of Gold Nanoparticles in Virus Detection. Theranostics 2018, 8, 1985-2017.
  •  
  • 4. García-Álvarez, R.; Hadjidemetriou, M.; Sánchez-Iglesias, A.; Liz-Marzán, L.M.; Kostarelos, K. In Vivo Formation of Protein Corona on Gold Nanoparticles. The Effect of Their Size and Shape. Nanoscale 2018, 10, 1256-1264.
  •  
  • 5. Lopez-Chaves, C.; Soto-Alvaredo, J.; Montes-Bayon, M.; Bettmer, J.; Llopis, J.; Sanchez-Gonzalez, C. Gold Nanoparticles: Distribution, Bioaccumulation and Toxicity. In Vitro and In Vivo Studies. Nanomedicine 2018, 14, 1-12.
  •  
  • 6. Jamkhande, P. G.; Ghule, N. W.; Bamer, A. H.; Kalaskar, M. G. Metal Nanoparticles Synthesis: An Overview on Methods of Preparation, Advantages and Disadvantages, and Applications. J. Drug Deliv. Sci. Technol. 2019, 53, 101174.
  •  
  • 7. Dong, J.; Carpinone, P. L.; Pyrgiotakis, G.; Demokritou, P.; Moudgil, B. M. Synthesis of Precision Gold Nanoparticles Using Turkevich Method. Kona 2020, 37, 224-232.
  •  
  • 8. Garibo, D.; Borbón-Nuñez, H. A.; De León, J. N. D.; García Mendoza, E.; Estrada, I.; Toledano-Magaña, Y.; Tiznado, H.; Ovalle-Marroquin, M.; Soto-Ramos, A. G.; Blanco, A.; Rodríguez, J. A.; Romo, O. A.; Chávez-Almazán, L. A.; Susarrey-Arce, A. Green Synthesis of Silver Nanoparticles Using Lysiloma Acapulcensis Exhibit High-Antimicrobial Activity. Sci. Rep. 2020, 10, 12805.
  •  
  • 9. Ijaz, I.; Gilani, E.; Nazir, A.; Bukhari, A. Detail Review on Chemical, Physical and Green Synthesis, Classification, Characterizations and Applications of Nanoparticles. Green Chem. Lett. Rev. 2020, 13, 223-245.
  •  
  • 10. Iravani, S.; Korbekandi, H.; Mirmohammadi, S. V.; Zolfaghari, B. Synthesis of Silver Nanoparticles: Chemical, Physical and Biological Methods. Res. Pharm. Sci. 2014, 9, 385-406.
  •  
  • 11. Mirzaei, A.; Janghorban, K.; Hashemi, B.; Bonyani, M.; Leonardi, S. G.; Neri, G. Characterization and Optical Studies of PVP-Capped Silver Nanoparticles. J. Nanostructure Chem. 2017, 7, 37-46.
  •  
  • 12. Sajid, M.; Płotka-Wasylka, J. Nanoparticles: Synthesis, Characteristics, and Applications in Analytical and Other Sciences. Microchem. J. 2020, 154, 104623.
  •  
  • 13. Shiraishi, Y.; Tanaka, H.; Sakamoto, H.; Ichikawa, S.; Hirai, T. Photoreductive Synthesis of Monodispersed Au Nanoparticles with Citric Acid as Reductant and Surface Stabilizing Reagent. RSC Adv. 2017, 7, 6187-6192.
  •  
  • 14. Verkhovskii, R.; Kozlova, A.; Atkin, V.; Kamyshinsky, R.; Shulgina, T.; Nechaeva, O. Physical Properties and Cytotoxicity of Silver Nanoparticles under Different Polymeric Stabilizers. Heliyon 2019, 5, e01305.
  •  
  • 15. Choi, J.; Kim, B. H. Ligands of Nanoparticles and their Influence on the Morphologies of Nanoparticle-based Films. Nanomaterials 2024, 14, 1685.
  •  
  • 16. El-Batal, A. I.; Mosalam, F. M.; Ghorab, M. M.; Hanora, A.; Elbarbary, A. M. Antimicrobial, Antioxidant and Anticancer Activities of Zinc Nanoparticles Prepared by Natural Polysaccharides and Gamma Radiation. Int. J. Biol. Macromol. 2018, 107, 2298-2311.
  •  
  • 17. Imanishi, A.; Gonsui, S.; Tsuda, T.; Kuwabata, S.; Fukui, K. I. Size and Shape of Au Nanoparticles Formed in Ionic Liquids by Electron Beam Irradiation. Phys. Chem. Chem. Phys. 2011, 13, 14823-14830.
  •  
  • 18. Naghavi, K.; Saion, E.; Rezaee, K.; Yunus, W. M. M. Influence of Dose on Particle Size of Colloidal Silver Nanoparticles Synthesized by Gamma Radiation. Radiat. Phys. Chem. 2010, 79, 1203-1208.
  •  
  • 19. Afify, T. A.; Saleh, H. H.; Ali, Z. I. Structural and Morphological Study of Gamma‐irradiation Synthesized Silver Nanoparticles. Polym. Compos. 2017, 38, 2687-2694.
  •  
  • 20. Vo, K. D. N.; Kowandy, C.; Dupont, L.; Coqueret, X.; Hien, N. Q. Radiation Synthesis of Chitosan Stabilized Gold Nanoparticles Comparison between E−Beam and γ Irradiation. Radiat. Phys. Chem. 2014, 94, 84-87.
  •  
  • 21. Chappuis, F.; Grilj, V.; Tran, H. N.; Zein, S. A.; Bochud, F.; Bailat, C.; Incerti, S.; Desorgher, L. Modeling of Scavenging Systems in Water Radiolysis with Geant4-DNA. Phys. Med. 2023, 108, 102549.
  •  
  • 22. Plante, I.; Devroye, Considerations for the Independent Reaction Times and Step-by-step Methods for Radiation Chemistry Simulations. Radiat. Phys. Chem. 2017, 139, 157-172.
  •  
  • 23. Baldacchino, G.; Brum, E.; Denden I.; Bouhadoun S.; Roux R.; Khodija H.; Sicard-Roselli C. Importance of Radiolytic Reactions During High‑LET Irradiation Modalities: LET Effect, Role of O2 and Radiosensitization by Nanoparticles. Cancer Nanotechol. 2019, 10, 3.
  •  
  • 24. Chappuis, F. E. Novel Approach to Radiotherapy using Ultra-High Dose Rate Radiations: Uncover the Early Mechanisms of the FLASH Effect with Monte Carlo Techniques. PhD Thesis. Université de Lausanne, Faculté de biologie et médecine, 2023; pp 134.
  •  
  • 25. Madden, K. P.; Mezyk, S. P. Critical Review of Aqueous Solution Reaction Rate Constants for Hydrogen Atoms J. Phys. Chem. Ref. Data 2011, 40, 023103.
  •  
  • 26. Panariello, L.; Damilos, S.; du Toit, H.; Wu, G.; Radhakrishnan, A. N. P.; Parkin, I. P.; Gavriilidis, A. Highly Reproducible, High-Yield Flow Synthesis of Gold Nanoparticles Based on a Rational Reactor Design Exploiting the Reduction of Passivated Au(III). React. Chem. Eng. 2020, 5, 663-676.
  •  
  • 27. Bui, A.; Bekerat, H.; Childress, L.; Sankey, J.; Seuntjens, J.; Enger, S. A. Effects of Incoming Particle Energy and Cluster Size on the G-Value of Hydrated Electrons. Phys. Med. 2023, 107, 102540.
  •  
  • 28. Korpanty, J.; Parent, L. R.; Gianneschi, N. C. Enhancing and Mitigating Radiolytic Damage to Soft Matter in Aqueous Phase Liquid-Cell Transmission Electron Microscopy in the Presence of Gold Nanoparticle Sensitizers or Isopropanol Scavengers. Nano Lett. 2021, 21, 1141-1149.
  •  
  • 29. Möller, S.; Höschen, D.; Arnoldbik, W.; Tyburska-Pueschel, B. An MeV Proton Irradiation Facility: DICE. Materials 2024, 17, 3646.
  •  
  • 30. Gracien, E. B.; Jérémie, M. L.; Joseph, L. K. K.; Omer, M. M.; Antoine, M. K.; Hercule, K. M.; Gerard, M. N. Role of Hydroxyl Radical Scavenger Agents in Preparing Silver Nanoparticles Under γ-Irradiation. SN Appl. Sci. 2019, 1, 961.
  •  
  • 31. Gachard, E.; Remita, H.; Khatouri, J.; Keita, B.; Nadjo, L.; Belloni, A. J. Radiation-Induced and Chemical Formation of Gold Clusters. New J. Chem. 1998, 22, 1257-1265.
  •  
  • 32. Zharikov, A. A.; Vinogradov, R. A.; Zezina, E. A.; Pozdnyakov, A. S.; Feldman, V. I.; Vasiliev, A. L.; Zezin, A. A. The Radiation-Induced Preparation of Ultrasmall Gold Nanoparticles in Au(III) Complexes with Units of Poly(1-Vinyl-1,2,4-Triazole) and Poly(1-Vinyl-1,2,4-Triazole)-Poly(Acrylic Acid). Colloids Interface Sci. Commun. 2022, 47, 100602.
  •  
  • 33. Kim, E. J.; Yeum, J. H.; Choi, J. H. Effects of Polymeric Stabilizers on the Synthesis of Gold Nanoparticles. J. Mater. Sci. Technol. 2014, 30, 107-111.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2024 Impact Factor : 0.6
  • Indexed in SCIE

This Article

  • 2025; 49(5): 618-625

    Published online Sep 25, 2025

  • 10.7317/pk.2025.49.5.618
  • Received on Mar 25, 2025
  • Revised on Apr 28, 2025
  • Accepted on May 27, 2025

Correspondence to

  • Chan-Hee Jung
  • Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Jeollabuk-do 56212, Korea

  • E-mail: jch@kaeri.re.kr