• Synthesis of Reactive Methacryl Phosphate Flame Retardant and Its Application in Thermosetting System
  • Minji Chang and Jinyoung Bae

  • Department of Polymer Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, Korea

  • 반응형 Methacryl Phosphate계 난연제의 합성 및열경화성 시스템으로의 적용
  • 장민지 · 배진영

  • 성균관대학교 고분자공학과

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.


References
  • 1. Sato, J.; Teraki, S.; Yoshida, M.; Kondo, H. High Performance Insulating Adhesive Film for High-Frequency Applications. 2017 IEEE 67th Electronic Components and Technology Conference (ECTC), ECTC Orlando, FL, USA, 30 May - 2 June, 2017, pp 1322-1327.
  •  
  • 2. Qin, Y.; Yu, X.; Fang, Z.; He, X.; Qu, M.; Han, M.; Lu, D.; Xue, K.; Wang, K. Recent Progress on Polyphenylene Oxide-based Thermoset Systems for High-performance Copper-clad Laminates. J. Phys. D Appl. Phys. 2023, 56, 064002.
  •  
  • 3. Ahmad, Z. Polymer Dielectric Materials. In Dielectric Material. Silaghi MA, Ed.; IntechOpen : London, 2012, DOI:10,5772/50638.
  •  
  • 4. Hamzah, IH.; Abd Manaf, A.; Sidek, O. Effect of Heat Treatment Temperature and Surface Roughness to the PDMS-FR4 Adhesive Bonding. J. Adhesion Sci. Technol. 2013, 27, 1122-1135.
  •  
  • 5. Medvedev, A. M. Composite Materials for Hi-Tech Printed Circuit Boards. IOP Conference Series: Mater. Sci. Eng. 2019, 675, 012044.
  •  
  • 6. Liao, L.; Ruan, W.; Zhang, M.; Lin, M. Recent Progress in Modification of Polyphenylene Oxide for Application in High-Frequency Communication. Materials. 2024, 17, 1086.
  •  
  • 7. Wang, L.; Yang, J.; Cheng, W.; Zou, J.; Zhao, D. Progress on Polymer Composites With Low Dielectric Constant and Low Dielectric Loss for High-Frequency Signal Transmission. Review. Front. Mater. 2021, 8, 774843.
  •  
  • 8. Perdigones, F.; Quero, J. M. Printed Circuit Boards: The Layers' Functions for Electronic and Biomedical Engineering. Micromachines (Basel) 2022, 13.
  •  
  • 9. Xu, T. Recent Developments in Different Techniques Used for the Flame Retardancy. Flame Retardants: Polymer Blends, Composites and Nanocomposites. Springer: Cham, 2015; pp 45-77.
  •  
  • 10. Parcheta-Szwindowska, P.; Habaj, J.; Krzemińska, I.; Datta, J. A Comprehensive Review of Reactive Flame Retardants for Polyurethane Materials: Current Development and Future Opportunities in an Environmentally Friendly Direction. Int. J. Molecular Sci. 2024, 25, 5512.
  •  
  • 11. Xu, Y-J.; Qu, L-Y.; Liu, Y.; Zhu, P. An Overview of Alginates as Flame-retardant Materials: Pyrolysis Behaviors, Flame Retardancy, and Applications. Carbohydr. Polym. 2021, 260, 117827.
  •  
  • 12. Camino, B.; Camino, G. The Chemical Kinetics of the Polymer Combustion Allows for Inherent Fire Retardant Synergism. Polymer Degrad. Stabil. 2019, 160, 142-147.
  •  
  • 13. Al-Mosawi, A. I. Flame Retardants, Their Beginning, Types, and Environmental Impact: A Review. Silicate Based and Compos. Mater. 2022, 74, DOI:10.14382/epitoanyag-jsbcm.2022.01.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2024 Impact Factor : 0.6
  • Indexed in SCIE

This Article

  • 2025; 49(6): 731-737

    Published online Nov 25, 2025

  • 10.7317/pk.2025.49.6.731
  • Received on Mar 24, 2025
  • Revised on Jun 30, 2025
  • Accepted on Aug 19, 2025

Correspondence to

  • Jinyoung Bae
  • Department of Polymer Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, Korea

  • E-mail: b521@skku.edu