• Intrinsic Antibacterial Polyurethane Foam from Terpineol and Linalool: Synthesis and Properties
  • Qun Li*, **, Jinjiong Hong*, **, Yidong Wu*, **,† , and Ruixia Hou***

  • *Department of Otorhinolaryngology Head and Neck Surgery, the Affiliated Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China.
    **Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo, Zhejiang 315040, China.
    ***Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China

  • 테르피네올과 리날룰로부터 얻은 고유 항균 폴리우레탄 폼: 합성 및 성질
  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.


References
  • 1. Kim, S.; Li, K.; Alsbaiee, A.; Brutman, J. P.; Dichtel, W. R. Circular Reprocessing of Thermoset Polyurethane Foams. Adv. Mater. 2023, 35, 2305387.
  •  
  • 2. Yang, F.; Cong, L.; Li, Z.; Yuan, J.; Guo, G.; Tan, L. Study on Preparation and Performance of a Thermosetting Polyurethane Modified Asphalt Binder for Bridge Deck Pavements. Constr. Building Mater. 2022, 326, 126784.
  •  
  • 3. Liu, Z.; Fang, Z.; Zheng, N.; Yang, K.; Sun, Z.; Li, S.; Xie, T. Chemical Upcycling of Commodity Thermoset Polyurethane Foams Towards High-performance 3D Photo-printing Resins. Nat. Chem. 2023, 15, 1773-1779.
  •  
  • 4. Silva, R.; Barros-Timmons, A.; Quinteiro, P. Life Cycle Assessment of Fossil-and Bio-based Polyurethane Foams: A Review. J. Cleaner Production, 2023, 430, 139697.
  •  
  • 5. Skleničková, K.; Abbrent, S.; Halecký, M.; Kočí, V.; Beneš, H. Biodegradability and Ecotoxicity of Polyurethane Foams: A Review. Critical Reviews in Environ. Sci. Technol. 2022, 52, 157-202.
  •  
  • 6. Rastegar, N.; Ershad-Langroudi, A.; Parsimehr, H.; Moradi, G. Sound-absorbing Porous Materials: A Review on Polyurethane-based Foams. Iranian Polym. J. 2022, 31, 83-105.
  •  
  • 7. Lin, B.; Yuen, A. C. Y.; Oliver, S.; Liu, J.; Yu, B.; Yang, W.; Wang, C. H. Dual Functionalisation of Polyurethane Foam for Unprecedented Flame Retardancy and Antibacterial Properties Using Layer-by-layer Assembly of MXene Chitosan with Antibacterial Metal Particles. Compos. Part B: Eng. 2022, 244, 110147.
  •  
  • 8. Moawed, E. A.; Eissa, M. S.; Al-Tantawy, S. A. Application of Polyurethane Foam/zinc Oxide Nanocomposite for Antibacterial Activity, Detection, and Removal of Basic Dyes from Wastewater. Int. J. Environ. Sci. Technol. 2023, 20, 7767-7774.
  •  
  • 9. Zhang, S.; Shi, X.; Miao, Z.; Zhang, H.; Zhao, X.; Wang, K.; Zhang, G. 3D‐printed Polyurethane Tissue‐engineering Scaffold with Hierarchical Microcellular Foam Structure and Antibacterial Properties. Adv. Eng. Mater. 2022, 24, 2101134.
  •  
  • 10. Sarkar, S.; Mestry, S.; Mhaske, S. T. Developments in Phase Change Material (PCM) Doped Energy Efficient Polyurethane (PU) Foam for Perishable Food Cold-storage Applications: A Review. J. Energy Storage 2022, 50, 104620.
  •  
  • 11. Yu, M.; Park, K. H.; Shin, J.; Lee, J. H. Predicting the Cut‐off Point for Interface Pressure in Pressure Injury According to the Standard Hospital Mattress and Polyurethane Foam Mattress as Support Surfaces. Int. Wound J. 2022, 19, 1509-1517.
  •  
  • 12. Sikdar, P.; Dip, T. M.; Dhar, A. K.; Bhattacharjee, M.; Hoque, M. S.; Ali, S. B. Polyurethane (PU) Based Multifunctional Materials: Emerging Paradigm for Functional Textiles, Smart, and Biomedical Applications. J. Appl. Polym. Sci. 2022, 139, e52832.
  •  
  • 13. Vinay, V. C.; Varma, D. M.; Chandan, M. R.; Sivabalan, P.; Jaiswal, A. K.; Swetha, S.; Sionkowska, A. Study of Silver Nanoparticle-loaded Auxetic Polyurethane Foams for Medical Cushioning Applications. Polym. Bulletin 2022, 79, 4233-4250.
  •  
  • 14. Moawed, E. A.; Eissa, M. S.; Al-Tantawy, S. A. Application of Polyurethane Foam/zinc Oxide Nanocomposite for Antibacterial Activity, Detection, and Removal of Basic Dyes from Wastewater. Int. J. Environ. Sci. Technol. 2023, 20, 7767-7774.
  •  
  • 15. Huang, M.; Du, X. Synergistic Effect of Ag Nanoparticle and Graphene on Improving Antimicrobial and Photothermal Conversion Performances of Their Polyurethane Foam Sensor. Chem. Eng. J. 2025, 507, 160836.
  •  
  • 16. Lin, B.; Yuen, A. C. Y.; Oliver, S.; Liu, J.; Yu, B.; Yang, W.; Wang, C. H. Dual Functionalisation of Polyurethane Foam for Unprecedented Flame Retardancy and Antibacterial Properties Using Layer-by-layer Assembly of MXene Chitosan with Antibacterial Metal Particles. Compos. Part B: Eng. 2022, 244, 110147.
  •  
  • 17. Tomaselli, S.; Bertini, F.; Cifarelli, A.; Vignali, A.; Ragona, L.; Losio, S. Antibacterial Properties of Polyurethane Foams Additivated with Terpenes From a Bio-based Polyol. Molecules 2023, 28, 1966.
  •  
  • 18. del Pilar Maya, M.; Torres, S.; Gartner, C. Synthesis and Surface Modification of Sunflower Oil‐based Non‐isocyanate Polyurethane: Physicochemical and Antibacterial Properties. J. Appl. Polym. Sci. 2024, 141, e55181.
  •  
  • 19. Ecevit, K.; Silva, E.; Rodrigues, L. C.; Aroso, I.; Barros, A. A.; Silva, J. M.; Reis, R. L. Surface Functionalization of Ureteral Stents-based Polyurethane: Engineering Antibacterial Coatings. Materials 2022, 15, 1676.
  •  
  • 20. Lv, X.; Li, Z.; Zhang, Z.; Wang, H.; Song, H.; Yuan, S.; Li, Z. Quaternary Ammonium Salt-Based Intrinsic Antibacterial Polyurethanes: Optimizing the Antibacterial Activity via Cationic Main-or Side-Chain Design in Hard Segments. ACS Appl. Mater. Interfaces, 2024, 16, 56862-56873.
  •  
  • 21. Sienkiewicz, N. Improvements of Polyurethane (PU) Foam’s Antibacterial Properties and Bio-resistance. In Thermal Insulation and Radiation Control Technologies for Buildings. Cham. Springer International Publishing. 2022, 217-240.
  •  
  • 22. Cui, M.; Li, S.; Ma, X.; Wang, J.; Wang, X.; Stott, N. E.; Zhu, J. Sustainable Janus Lignin-based Polyurethane Biofoams with Robust Antibacterial Activity and Long-term Biofilm Resistance. Int. J. Biological Macromol. 2024, 256, 128088.
  •  
  • 23. Guo, F.; Chen, Q.; Liang, Q.; Zhang, M.; Chen, W.; Chen, H.; Chen, W. Antimicrobial Activity and Proposed Action Mechanism of Linalool Against Pseudomonas Fluorescens. Frontiers in Microbiol. 2021, 12, 562094.
  •  
  • 24. Zhang, L.; Su, Q. F.; Wang, L. S.; Lv, M. W.; Hou, Y. X.; Li, S. S. Linalool: A Ubiquitous Floral Volatile Mediating the Communication Between Plants and Insects. J. Systematics Evolution, 2023, 61, 538-549.
  •  
  • 25. Weston-Green, K.; Clunas, H.; Jimenez Naranjo, C. A Review of the Potential Use of Pinene and Linalool as Terpene-based Medicines for Brain Health: Discovering Novel Therapeutics in the Flavours and Fragrances of Cannabis. Front. Psychiatry, 2021, 12, 583211.
  •  
  • 26. Aytac, Z.; Yildiz, Z. I.; Kayaci-Senirmak, F.; Tekinay, T.; Uyar, T. Electrospinning of Cyclodextrin/linalool-inclusion Complex Nanofibers: Fast-dissolving Nanofibrous Web with Prolonged Release and Antibacterial Activity. Food Chem. 2017, 231, 192-201.
  •  
  • 27. An, Y.; Zhai, R.; Chen, J.; Xie, P. Preparation and Application of a Novel pH-responsive Linalool Carboxymethyl Chitosan Hydrogel. J. Macromol. Sci. Part A, 2023, 60, 336-345.
  •  
  • 28. Sales, A.; Felipe, L. D. O.; Bicas, J. L. Production, Properties, and Applications of a-terpineol. Food Bioprocess Technol. 2020, 13, 1261-1279.
  •  
  • 29. Park, S. N.; Lim, Y. K.; Freire, M. O.; Cho, E.; Jin, D.; Kook, J. K. Antimicrobial Effect of Linalool and a-terpineol Against Periodontopathic and Cariogenic Bacteria. Anaerobe, 2012, 18, 369-372.
  •  
  • 30. Li, L.; Shi, C.; Yin, Z.; Jia, R.; Peng, L.; Kang, S.; Li, Z. Antibacterial Activity of a-terpineol May Induce Morphostructural Alterations in Escherichia coli. Brazilian J. Microbiol. 2014, 45, 1409-1413.
  •  
  • 31. Ding, Q.; Zhuang, T.; Fu, P.; Zhou, Q.; Luo, L.; Dong, Z.; Tang, S. a-terpineol Grafted Acetylated Lentinan as An Anti-bacterial Adhesion Agent. Carbohydr. Polym. 2022, 277, 118825.
  •  
  • 32. Querido, M. M.; Paulo, I.; Hariharakrishnan, S.; Rocha, D.; Barbosa, N.; Gonçalves, D.; Pereira, C. C. Development and In Vitro Validation of Antibacterial Paints Containing Chloroxylenol and Terpineol. Toxics, 2022, 10, 343.
  •  
  • 33. Liu, L.; Lu, J.; Zhang, Y.; Liang, H.; Liang, D.; Jiang, J.; Zhang, C. Thermosetting Polyurethanes Prepared with the Aid of a Fully Bio-based Emulsifier with High Bio-content, High Solid Content, and Superior Mechanical Properties. Green Chem. 2019, 21, 526-537.
  •  
  • 34. Zhuang, Y.; Ren, Z.; Jiang, L.; Zhang, J.; Wang, H.; Zhang, G. Raman and FTIR Spectroscopic Studies on Two Hydroxylated Tung Oils (HTO) Bearing Conjugated Double Bonds. Spectrochim. Acta Part A, 2018, 199, 146-152.
  •  
  • 35. Dey, J.; Xu, H.; Shen, J.; Thevenot, P.; Gondi, S. R.; Nguyen, K. T.; Yang, J. Development of Biodegradable Crosslinked Urethane-doped Polyester Elastomers. Biomaterials, 2008, 29, 4637-4649.
  •  
  • 36. Li, F.; Hanson, M. V.; Larock, R. C. Soybean Oil-divinylbenzene Thermosetting Polymers: Synthesis, Structure, Properties and Their Relationships. Polymer, 2001, 42, 1567-1579.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2024 Impact Factor : 0.6
  • Indexed in SCIE

This Article

  • 2025; 49(6): 749-756

    Published online Nov 25, 2025

  • 10.7317/pk.2025.49.6.749
  • Received on Apr 21, 2025
  • Revised on Jul 16, 2025
  • Accepted on Jul 16, 2025

Correspondence to

  • Yidong Wu
  • *Department of Otorhinolaryngology Head and Neck Surgery, the Affiliated Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China.
    **Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo, Zhejiang 315040, China.

  • E-mail: wyd330282@163.com