• Tuning the Length of Polyaniline Nanotubes
  • Ashesh Garai

  • Department of Chemistry, Rammohan College, Kolkata 700009, India

  • 폴리아닐린 나노튜브의 길이 조절
  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.


References
  • 1. Altintas, O.; Fischer, T. S.; Barner-Kowollik, C. Synthetic Methods Toward Single-Chain Polymer Nanoparticles; Pomposo, J. A.; Eds.; Single‐Chain Polymer Nanoparticles: Synthesis, Characterization, Simulations, and Applications. Wiley‐VCH Verlag GmbH & Co. KGaA: Weinheim 2017; pp. 1-45.
  •  
  • 2. Andreatta, A.; Cao, Y.; Chiang, J. C.; Heeger, A. J.; Smith, P. Electrically-conductive Fibers of Polyaniline Spun From Solutions in Concentrated Sulfuric Acid Synth. Met. 1988, 26, 383-389.
  •  
  • 3. Nitti, A.; Carfora, R.; Assanelli, G.; Notari, M.; Pasini, D. Single-Chain Polymer Nanoparticles for Addressing Morphologies and Functions at the Nanoscale: A Review. ACS Appl. Nano Mater. 2022,5, 13985-13997.
  •  
  • 4. Alqarni, M. A. M.; Waldron, C.; Yilmaz, G.; Remzi Becer, C. Synthetic Routes to Single Chain Polymer Nanoparticles (SCNPs): Current Status and Perspectives. Macro. Rapid Commn. 2021, 42, 2100035.
  •  
  • 5. Aiertza, M. K.; Odriozola, I.; Cabañero, G.; Grande, H-J.; Loinaz, I. Single-chain Polymer Nanoparticles. Cell. Mol. Life. Sci. 2012, 69, 337-46.
  •  
  • 6. Kröger, A. P. P.; Paulusse, J. M. J. Single-chain Polymer Nanoparticles in Controlled Drug Delivery and Targeted Imaging. J. Control. Release. 2018, 86, 326-347.
  •  
  • 7. Hamelmann, N. M.; Paulusse, J. M. J. Single-chain Polymer Nanoparticles in Biomedical Applications. J. Control. Release. 2023, 356, 26-42.
  •  
  • 8. Saad, M.; Tahir, H.; Khan, J.; Hameed, U.; Saud, A. Synthesis of Polyaniline Nanoparticles and Their Application for the Removal of Crystal Violet Dye by Ultrasonicated Adsorption Process Based on Response Surface Methodology. Ultrason. Sonochem. 2017,34, 600-608.
  •  
  • 9. Ayad, M.; El-Hefnawy, G.; Zaghlol, S. Facile Synthesis of Polyaniline Nanoparticles, Its Adsorption Behavior. Chem. Eng. J. 2013, 217, 460-465.
  •  
  • 10. Garai, A.; Nandi, A. K. Tuning of Different Polyaniline Nanostructures From a Coacervate Gel/sol Template. Synth. Met. 2009, 159, 757-760.
  •  
  • 11. Sk, M. M.; Yue, C. Y. Synthesis of Polyaniline Nanotubes Using the Self-assembly Behavior of Vitamin C: a Mechanistic Study and Application in Electrochemical Supercapacitors. J. Mater. Chem. A. 2014, 2, 2830-2838.
  •  
  • 12. Mondal, S.; Rana, U.; Das, P.; Malik, S. Network of Polyaniline Nanotubes for Wastewater Treatment and Oil/Water Separation. ACS Appl. Polym. Mater. 2019, 1, 1624-1633.
  •  
  • 13. Swisher, J. H.; Jibril, L.; Petrosko, S. H.; Mirkin, C. A. Nanoreactors for Particle Synthesis. Nat. Rev. Mater. 2022, 7, 428-448.
  •  
  • 14. Petrosko, S. H.; Johnson, R.; White, H.; Mirkin, C. A. Nanoreactors: Small Spaces, Big Implications in Chemistry. J. Am. Chem. Soc. 2016, 138, 7443-7445.
  •  
  • 15. Wojkiewicz, J. L.; Bliznyuk, V. N.; Carquigny, S.; Elkamchi, N.; Redon, N.; Lasri, T.; Pud, A. A.; Reynaud, S. Nanostructured Polyaniline-based Composites for Ppb Range Ammonia Sensing. Sens. Actuators B: Chem. 2011, 160, 1394-1403.
  •  
  • 16. Mishra, P. K.; Sharma, H. K.; Gupta, R.; Manglik, M.; Brajpuriya, R. A Critical Review on Recent Progress on Nanostructured Polyaniline (PANI) Based Sensors for Various Toxic Gases: Challenges, Applications, and Future Prospects. Microchem. J. 2025, 208, 112369.
  •  
  • 17. Askar, P.; Kanzhigitova, D.; Tapkharov, A.; Umbetova, K.; Duisenbekov, S.; Adilov, S.; Nuraje, N. Hydrogen Sensors Based on Polyaniline and Its Hybrid Materials: a Mini Review. Discover Nano 2025, 20, 68.
  •  
  • 18. Gizdavic-Nikolaidis, M.; Travas-Sejdic. J.; Kilmartin, P. A.; Bowmaker, G. A.; Cooney, R. P. Evaluation of Antioxidant Activity of Aniline and Polyaniline. Current Appl. Phys. 2004, 4, 343.
  •  
  • 19. Stejskal, J.; Sapurina, I.; Trchova, M.; Konyushenko, E. N.; Holler, P. The Genesis of Polyaniline Nanotubes. Polymer 2006, 47, 8253.
  •  
  • 20. Venancio, E. C.; Wang, P.-C.; MacDiarmid, A. G. The Azanes: A Class of Material Incorporating Nano/micro Self-assembled Hollow Spheres Obtained by Aqueous Oxidative Polymerization of Aniline. Synth. Metals. 2006, 156, 357.
  •  
  • 21. Trchova, M.; Sedenkova, I.; Konyushenko, E. N.; Stejskal, J.; Holler, P.; Ciric-Marjanovic, G.; Evolution of Polyaniline Nanotubes:  The Oxidation of Aniline in Water. J.Phys.Chem. B. 2006, 110, 9461.
  •  
  • 22. Li, Y.; Zheng, J.-L.; Feng, J.; Jing, X.-L. Polyaniline Micro-/nanostructures: Morphology Control and Formation Mechanism Exploration. Chem. Pap. 2013, 67, 876-890.
  •  
  • 23. Zeng, X.-R.; Ko, T.-M. Structures and Properties of Chemically Reduced Polyanilines. Polymer 1998, 39, 1187-1195.
  •  
  • 24. Burgess, D. J. Practical Analysis of Complex Coacervate Systems. J. Colloid InterfaceSci. 1990, 140, 227-238.
  •  
  • 25. Nallamilli, T.; Ketomaeki, M.; Prozeller, D.; Mars, J.; Morsbach, S.; Mezger, M.; Vilgis, T. Complex Coacervation of Food Grade Antimicrobial Lauric Arginate with Lambda Carrageenan. CRFS 2021, 4, 53-62.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2024 Impact Factor : 0.6
  • Indexed in SCIE

This Article

  • 2025; 49(6): 793-798

    Published online Nov 25, 2025

  • 10.7317/pk.2025.49.6.793
  • Received on May 22, 2025
  • Revised on Jul 19, 2025
  • Accepted on Jul 20, 2025

Correspondence to

  • Ashesh Garai
  • Department of Chemistry, Rammohan College, Kolkata 700009, India

  • E-mail: agchemistry@rammohancollege.ac.in