Article
  • Effect of Radical Initiators on the Phase Structure and Rheological Properties of PLA/PBAT/Multi-walled Carbon Nanotube Composites
  • Bai Lu, Jeongwoo Lee, Youngsoo Choi, and Hyungsu Kim

  • Department of Chemical Engineering, Dankook University, 152 Jukjeon-ro, Yongin-si, Gyeonggi 16890, Korea

  • 라디칼 개시제가 PLA/PBAT/Multi-walled Carbon Nanotube 복합체의 상구조와 유변물성에 미치는 영향
  • 바이루 · 이정우 · 최영수 · 김형수

  • 단국대학교 화학공학과

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Jacobsen, S.; Fritz, H. G.; Degée, P.; Dubois, P. H.; Jérôme, R. Polylactide (PLA)-A New Way of Production. Polym. Eng. Sci. 1999, 39, 1311-1319.
  •  
  • 2. Zhao, P.; Liu, W.; Wu, Q.; Ren, J. Preparation, Mechanical, and Thermal Properties of Biodegradable Polyesters/Poly(lactic acid) Blends. J. Nanomater. 2010, 287082.
  •  
  • 3. Meng, B.; Deng, J.; Liu, Q.; Wu, Z.; Yang, W. Transparent and Ductile Poly(lactic acid)/ Poly(butyl acrylate) (PBA) Blends: Structure and Properties. Eur. Polym. J. 2012, 48, 127-135.
  •  
  • 4. Lee, S. M.; Lee, J. W. Characterization and Processing of Biodegradable Polymer Blends of Poly(lactic acid) with Poly(butylene succinate adipate). Korea-Aust. Rheol. J. 2005, 1, 71-77.
  •  
  • 5. Bhatia, A.; Gupta, R.; Bhattacharya, S.; Choi, H. Compatibility of Biodegradable Poly(lactic acid) (PLA) and Poly(butylene succinate) (PBS) Blends for Packaging Application. Korea-Aust. Rheol. J. 2007, 19, 125-131.
  •  
  • 6. Muthuraj, R.; Misra, M.; Mohanty, A. K. Biodegradable Poly-(butylene succinate) and Poly (butylene adipate-co-terephthalate) Blends: Reactive Extrusion and Performance Evaluation. J. Polym. Environ. 2014, 22, 336-349.
  •  
  • 7. Jiang, L.; Wolcott, M. P.; Zhang, J. Study of Biodegradable Polylactide/Poly(butylene adipate-co-terephthalate) Blends. Biomacromolecules 2006, 7, 199-207.
  •  
  • 8. Yeh, J.-T.; Tsou, C.-H.; Huang, C.-Y.; Chen, K.-N.; Wu, C.-S.; Chai, W.-L. Compatible and Crystallization Properties of Poly- (lactic acid)/Poly(butylene adipate-co-terephthalate) blends. J. Appl. Polym. Sci. 2009, 47, 680-687.
  •  
  • 9. Deng, Y.; Yu, C.; Wongwiwattana, P.; Thomas, N. Optimising Ductility of Poly(lactic acid)/Poly(butylene adipate-co-terephthalate) Blends Through Co-continuous Phase Morphology. J. Polym. Environ. 2018, 26, 3802-3816.
  •  
  • 10. Arruda, L.; Magaton, M.; Bretas, R.; Ueki, M. Influence of Chain Extender on Mechanical, Thermal and Morphological Properties of Blown Films of PLA/PBAT Blends. Polym. Test. 2015, 43, 27-37.
  •  
  • 11. Gua, S. Y.; Zhang, K.; Ren, J.; Zhan, H. Melt Rheology of Polylactide/Poly(butylene adipate-co-terephthalate) Blends. Carbohydr. Polym. 2008, 74, 79-85.
  •  
  • 12. Coltelli, M. B.; Della Maggiore, I.; Bertoldo, M.; Bronco, S.; Signori, F.; Ciardelli, F. Poly (lactic acid) (PLA) Properties as a Consequence of Poly(butylene adipate-co-terephtahlate) (PBAT) Blending and Acetyl Tributyl Citrate (ATBC) Plasticization. J. Appl. Polym. Sci. 2008, 110, 1250-1262.
  •  
  • 13. Signori, F.; Coltelli; M. B.; Bronco, S.; Ciardelli, F. Thermal Degradation of Poly(lactic acid) (PLA) and Poly(butylene adipate-co-terephtalate) (PBAT) as a Consequence of Melt Processing: Effects on Pure Materials and Their Blends. Polym. Degrad. Stab. 2009, 94, 74-82.
  •  
  • 14. Ding, Y.; Lu, B.; Wang, P.; Wang, G.; Ji, J. PLA-PBAT-PLA Tri-block Copolymers: Effective Compatibilizers for Promotion of The Mechanical and Rheological Properties of PLA/PBAT Blends. Polym. Degrad. Stab. 2018, 147, 41-48.
  •  
  • 15. Al-Itry, R.; Lamnawar, K.; Maazouz, A. Improvement of Thermal Stability, Rheological and Mechanical Properties of PLA, PBAT and Their Blends by Reactive Extrusion with Functionalized Epoxy. Polym. Degrad. Stab. 2012, 97, 1898-1914.
  •  
  • 16. Al-Itry, R.; Lamnawar, K.; Maazouz, A. Reactive Extrusion of PLA, PBAT with a Multi-functional Epoxide: Physico-chemical and Rheological Properties. Eur. Polym. J. 2014, 58, 90-102.
  •  
  • 17. Wu, D.; Huang, A.; Fan, J.; Xu, R.; Liu, P.; Li, G.; Yang, S. Effect of Blending Procedures and Reactive Compatibilizers on the Properties of Biodegradable Poly(butylene adipate-co-terephthalate)/Poly(lactic acid) Blends. J. Polym. Eng. 2021, 41, 95-108.
  •  
  • 18. Coltelli, M.-B.; Bronco, S.; Chinea, C. The Effect of Free Radical Reactions on Structure and Properties of Poly(lactic acid) (PLA) Based Blends. Polym. Degrad. Stab. 2010, 95, 332-341.
  •  
  • 19. Ma, P.; Cai, X.; Zhang, Y.; Wang, S.; Dong, W.; Chen, M.; Lemstra, P. J. In-situ Compatibilization of Poly(lactic acid) and Poly(butylene adipate-co-terephthalate) Blends by Using Dicumyl Peroxide as a Free-radical Initiator. Polym. Degrad. Stab. 2014, 102, 145-151.
  •  
  • 20. Denisov, E. T.; Denisova, T. G.; Pokidova, T. S. Handbook of Free Radical Initiators; John Wiley & Sons: New Jersey, 2003.
  •  
  • 21. Carlson, D.; Dubois, P.; Nie, L.; Narayan, R. Free Radical Branching of Polylactide by Reactive Extrusion, Polym. Eng. Sci. 1998, 38, 311-321.
  •  
  • 22. Takamura, M.; Nakamura, T.; Takahashi, T.; Koyama, K. Effect of Type of Peroxide on Cross-linking of Poly(L-lactide). Polym. Degrad. Stab. 2008, 93, 1909-1916.
  •  
  • 23. Okaya, T.; Suzuki, A.; Kikuchi, K. Effect of Initiators on Grafting in The Initial Stage of The Emulsion Polymerization of Methyl Methacrylate Using Poly(vinyl alcohol) as a Protective Colloid. Colloid Polym. Sci. 2002, 280, 188-192.
  •  
  • 24. Chuang, H. K.; Han, C. D. Rheological Behavior of Polymer Blends. J. Appl. Polym. Sci. 1984, 29, 2205-2229.
  •  
  • 25. Han, C. D.; Kim, J.; Kim, J. K. Determination of the Order-Disorder Transition Temperature of Block Copolymers. Macro- molecules 1989, 22, 383-394.
  •  
  • 26. Harrell, E. R.; Nakayama, N. Modified Cole-Cole Plot Based on Viscoelastic Properties for Characterizing Molecular Architecture of Elastomers. J. Appl. Polym. Sci. 1984, 29, 995-1010.
  •  
  • 27. Nish, A.; Hwang, J. Y.; Doig, J.; Nicholas, R. J. Highly Selective Dispersion of Single-Walled Carbon Nanotubes Using Aromatic Polymers. Nat. Nanotechnol. 2007, 2, 640-646.
  •  
  • 28. Bahun, G. J.; Wang, C.; Adronov, A. Solubilizing Single-Walled Carbon Nanotubes with Pyrenefunctionalized Block Copolymers. J. Polym. Sci. A: Polym. Chem. 2006, 44, 1941-1951.
  •  
  • 29. Ko, S. W.; Hong, M. K.; Park, B. J.; Gupta, R. K.; Choi, H. J.; Bhattacharya, S. N. Morphological and Rheological Characteri- zation of Multi-Walled Carbon Nanotube/PLA/PBAT Blend Nanocomposites, Polym. Bull. 2009, 63, 125-134.
  •  
  • 30. Ko, S. W.; Gupta, R. K.; Bhattacharya, S. N.; Choi, H. J. Rheology and Physical Characteristics of Synthetic Biodegradable Aliphatic Polymer Blends Dispersed with MWNTs. Macromol. Mater. Eng. 2010, 295, 320-328.
  •  
  • 31. Tagueta, A.; Cassagnaub, P.; Lopez-Cuesta, J.-M. Structuration, Selective Dispersion and Compatibilizing Effect of (Nano)fillers in Polymer Blends. Prog. Polym. Sci. 2014, 39, 1526-1563.
  •  
  • 32. Sumita, M.; Sakata, K.; Hayakawa, Y.; Asai, S.; Miyasaka, K.; Tanemura, M. Double Percolation Effect on the Electrical Conductivity of Conductive Particles Filled Polymer Blends. Colloid Polym. Sci. 1992, 270, 134-139.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2022; 46(5): 701-708

    Published online Sep 25, 2022

  • 10.7317/pk.2022.46.5.701
  • Received on Jul 15, 2022
  • Revised on Aug 8, 2022
  • Accepted on Aug 8, 2022

Correspondence to

  • Hyungsu Kim
  • Department of Chemical Engineering, Dankook University, 152 Jukjeon-ro, Yongin-si, Gyeonggi 16890, Korea

  • E-mail: hkim@dankook.ac.kr