Article
  • Effect of Surface Modified Halloysite Nanotubes (mHNTs) on the Mechanical Properties and Swelling Resistance of EPDM/NBR Nanocomposites
  • R. Sundar , S. Krishna Mohan, and S. Vishvanathperumal*

  • Department of Mechanical Engineering, E.G.S. Pillay Engineering College, Nagappattinam, Tamilnadu 611002, India
    *Department of Mechanical Engineering, S.A. Engineering College, Chennai, Tamilnadu 600077, India

  • 표면 개질된 Halloysite 나노튜브(mHNTs)가 EPDM/NBR 나노복합체의 기계적 물성 및 팽윤 거동에 미치는 영향
  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Medalia, A.Effect of Carbon Black on Dynamic Properties of Rubber Vulcanizates. Rubber Chem. Technol. 1978, 51, 437-523.
  •  
  • 2. Vilgis, T. A.; Heinrich, G. Disorder-induced Enhancement of Polymer Adsorption-A Model for the Rubber-polymer Interaction in Filled Rubbers. Macromolecules 1994, 27, 26.
  •  
  • 3. Senthilvel, K.; Vishvanathperumal, S.; Prabu, B.; Baruch, L. J. Studies on the Morphology, Cure Characteristics anD Mechanical Properties of Acrylonitrile Butadiene Rubber with Hybrid Iller (carbon black/silica) Composite. Polym. Polym. Compos. 2016, 24, 473-480.
  •  
  • 4. Vishvanathperumal, S.; Gopalakannan, S. Reinforcement of Ethylene Vinyl Acetate with Carbon Black/silica Hybrid Filler Composites. Appl. Mech. Mater. 2016, 852, 16-22.
  •  
  • 5. Merabia, S.; Sotta, P.; Long, D. R. A Microscopic Model for the Reinforcement and the Nonlinear Behavior of Filled Elastomers and Thermoplastic Elastomers (Payne and Mullins Effects). Macromolecules 2008, 41, 8252-8266.
  •  
  • 6. Anand, G.; Vishvanathperumal, S. Properties of SBR/NR Blend: The Effects of Carbon Black/Silica (CB/SiO2) Hybrid Filler and Silane Coupling Agent. Silicon 2022, 14, 9051-9060.
  •  
  • 7. Vishvanathperumal, S.; Navaneethakrishnan, V.; Anand, G.; Gopalakannan, S. Evaluation of Crosslink Density Using Material Constants of Ethylene-Propylene-Diene Monomer/Styrene-Butadiene Rubber with Different Nanoclay Loading: Finite Element Analysis-simulation and Experimental. Adv. Sci. Eng. Med. 2020, 12, 632-642.
  •  
  • 8. Vishvanathperumal, S.; Anand, G. Effect of Nanosilica and Crosslinking System on the Mechanical Properties and Swelling Resistance of EPDM/SBR Nanocomposites with and without TESPT. Silicon 2021, 13, 3473-3497.
  •  
  • 9. Sadasivuni, K. K.; Ponnamma, D.; Thomas, S.; Grohens, Y. Evolution from Graphite to Graphene Elastomer Composites. Prog. Polym. Sci. 2014, 39, 749-780.
  •  
  • 10. Paran, S. M. R.; Naderi, G.; Ghoreishy, M. H. R. XNBR-grafted Halloysite Nanotubes Core-Shell as a Potential Compatibilizer for Immiscible Polymer Systems. Appl. Surf. Sci. 2016, 382, 63-72.
  •  
  • 11. Tripathi, B. P.; Shahi, V. K. ChemInform Abstract: Organic-Inorganic Nanocomposite Polymer Electrolyte Membranes for Fuel Cell Applications. Prog. Polym. Sci. 2011, 36, 945-979.
  •  
  • 12. Haraguchi, K.; Li, H. J. Mechanical Properties and Structure of Polymer-Clay Nanocomposite Gels with High Clay Content. Macromolecules 2006, 39, 1898-1905.
  •  
  • 13. Anirudhan, T.S.; Alexander, S. Multiwalled Carbon Nanotube Based Molecular Imprinted Polymer for Trace Determination of 2,4-Dichlorophenoxyaceticacid in Natural Water Samples Using a Potentiometric Method. Appl. Surf. Sci. 2014, 303, 180-186.
  •  
  • 14. Ganeche, P. S.; Balasubramanian, P.; Vishvanathperumal, S. Halloysite Nanotubes (HNTs)-Filled Ethylene-Propylene-Diene Monomer/Styrene-Butadiene Rubber (EPDM/SBR) Composites: Mechanical, Swelling, and Morphological Properties. Silicon, 2021, 14, 6611-6620.
  •  
  • 15. Yah, W. O.; Takahara, A.; Lvov, Y. M. Selective Modification of Halloysite Lumen with Octadecylphosphonic Acid: New Inorganic Tubular Micelle. J. Am. Chem. Soc. 2012, 134, 1853-1859.
  •  
  • 16. Abdullayev, E.; Joshi, A.; Wei, W.; Zhao, Y.; Lvov, Y. Enlargement of Halloysite Clay Nanotube Lumen by Selective Etching of Aluminum Oxide. ACS Nano 2012, 6, 7216-7226.
  •  
  • 17. Liu, M.; Jia, Z.; Jia, D.; Zhou, C. Recent Advance in Research on Halloysite Nanotubes-Polymer Nanocomposite. Prog. Polym. Sci. 2014, 39, 1498-1525.
  •  
  • 18. Liu, M.; Guo, B.; Du, M.; Cai, X.; Jia, D. Properties of Halloysite Nanotube Epoxy Resin Hybrids and the Interfacial Reactions in the Systems. Nanotechnology 2007, 18, 89-99.
  •  
  • 19. Cavallaro, G.; Lazzara, G.; Milioto, S.; Palmisano, G.; Parisi, F. Halloysite Nanotubes with Fluorinated Lumen: Non-foaming Nanocontainer for Storage and Controlled Release of Oxygen in Aqueous Media. J. Colloid Interface Sci. 2014, 417, 66-71.
  •  
  • 20. Liu, M.; Jia, Z.; Jia, D.; Zhou, C. Recent Advance in Research on Halloysite Nanotubes Polymer Nanocomposite. Prog. Polym. Sci. 2014, 39, 1498-1525.
  •  
  • 21. Solomon, D. H. Clay Minerals as Electron Acceptors and/or Electron Donors in Organic Reactions. Clay Clay Miner. 1968, 16, 31-39.
  •  
  • 22. Rawtani, D.; Agrawal, Y. K. Multifarious Applications of Halloysite Nanotubes: A Review. Rev. Adv. Mater. Sci. 2012, 30, 282-295.
  •  
  • 23. Cavallaro, G.; Lazzara, G.; Milioto, S. Sustainable Nanocomposites Based on Halloysite Nanotubes and Pectin/polyethylene Glycol Blend. Polym. Degrad. Stab. 2013, 98, 2529-2536.
  •  
  • 24. Cavallaro, G.; Lisi, R. D.; Lazzara, G.; Milioto, S. Polyethylene Glycol/Clay Nanotubes Composites Thermal Properties and structure. J. Therm. Anal. Calorim. 2013a, 112, 383-389.
  •  
  • 25. Deen, I.; Zhitomirsky, I. Electrophoretic Deposition of Composite Halloysite Nanotubes-Hydroxyapatite-Hyaluronic Acid Films. J. Alloys Compd. 2014, 586, S531-S534.
  •  
  • 26. Du, Y.; Zheng, P. Adsorption and Photodegradation of Methylene Blue on TiO2-halloysite Adsorbents. Korean J. Chem. Eng. 2014, 31, 2051-2056.
  •  
  • 27. Yuan, P.; Tan, D.; Bergaya, F. A. Properties and Applications of Halloysite Nanotubes: Recent Research Advances and Future Prospects. Appl. Clay Sci. 2015, 112-113, 75-93.
  •  
  • 28. Yuan, P.; Southon, P. D.; Liu, Z.; Green, M. E. R.; Hook, J. M.; Antill, S. J.; Kepert, C. J. Functionalization of Halloysite Clay Nanotubes by Grafting with γ-aminopropyltriethoxysilane. J. Phys. Chem. C 2008, 112, 15742-15751.
  •  
  • 29. Hashemifard, S. A.; Ismail, A. F.; Matsuura, T. Mixed Matrix Membrane Incorporated with Large Pore Size Halloysite Nanotubes (HNT) as Filler for Gas Separation: Experimental. J. Colloid Interface Sci. 2011, 359, 359-370.
  •  
  • 30. Zhao, Y.; Abdullayev, E.; Vasiliev, A.; Lvov, Y. Halloysite Nanotubule Clay for Efficient Water Purification. J. Colloid Interface Sci. 2013, 406, 121-129.
  •  
  • 31. Abdullayev, E.; Sakakibara, K.; Okamoto, K.; Wei, W.; Ariga, K.; Lvov, Y. Natural Tubule Clay Template Synthesis of Silver Nanorods for Antibacterial Composite Coating. ACS Appl. Mater. Interfaces 2011, 3, 4040-4046.
  •  
  • 32. Jia, Z.; Luo, Y.; Guo, B.; Yang, B.; Du, M.; Jia, D. Reinforcing and Flame Retardant Effects of Halloysite Nanotubes on LLDPE. Polym.-Plast. Technol. Eng. 2009, 48, 607-613.
  •  
  • 33. Pasbakhsh, P.; Churchman, G. J.; Keeling, J. L. Characterisation of Properties of Various Halloysites Relevant to Their Use as Nanotubes and Microfibre Fillers. Appl. Clay Sci. 2013, 74, 47-57.
  •  
  • 34. Rooj, S.; Das, A.; Thakur, V.; Mahaling, R. N.; Bhowmick, A. K.; Heinrich, G. Preparation and Properties of Natural Nanocomposites Based on Natural Rubber and Naturally Occurring Halloysite Nanotubes. Mater. Des. 2010, 31, 2151-2156.
  •  
  • 35. Du, M.; Guo, B.; Lei, Y.; Liu, M.; Jia, D. Carboxylated Butadiene-Styrene Rubber/halloysite Nanotube Nanocomposites: Interfacial Interaction and Performance. Polymer 2008, 49, 4871-4876.
  •  
  • 36. Cavallaro, G.; Lazzara, G.; Milioto, S. Dispersions of Nanoclays of Different Shapes into Aqueous and Solid Biopolymeric Matrices. Extended Physicochemical Study. Langmuir 2010, 27, 1158-1167.
  •  
  • 37. Arcudi, F.; Cavallaro, G.; Lazzara, G. Selective Functionalization of Halloysite Cavity by Click Reaction: Structured Filler for Enhancing Mechanical Properties of Bionanocomposite Films. J. Phys. Chem. C 2014, 118, 15095-15101.
  •  
  • 38. Liu, M.; Guo, B.; Zou, Q.; Du, M.; Jia, D. Interactions Between Halloysite Nanotubes and 2,5-Bis(2-benzoxazolyl) Thiophene and Their Effects on Reinforcement of Polypropylene/Halloysite Nanocomposites. Nanotechnology 2008, 19, 205709-205709.
  •  
  • 39. Liu, M.; Chang, Y.; Yang, J.; You, Y.; He, R.; Chen, T.; Zhou, C. Functionalized Halloysite Nanotube by Chitosan Grafting for Drug Delivery of Curcumin to Achieve Enhanced Anticancer Efficacy. J. Mater. Chem. B 2016, 4, 2253-2263.
  •  
  • 40. Liu, M.; Wu, C.; Jiao, Y.; Xiong, S.; Zhou, C. Chitosanehalloysite Nanotubes Nanocomposite Scaffolds for Tissue Engineering. J. Mater. Chem. B 2013, 1, 2078-2089.
  •  
  • 41. Ye, Y.; Chen, H.; Wu, J.; Ye, L. High Impact Strength Epoxy Nanocomposites with Natural Nanotubes. Polymer 2007, 48, 6426-6433.
  •  
  • 42. Liu, M.; Guo, B.; Du, M.; Cai, X.; Jia, D. Properties of Halloysite Nanotubes-Epoxy Resin Hybrids and the Interfacial Reactions in the Systems. Nanotechnology 2007, 18, 281-287.
  •  
  • 43. Marney, D. C. O.; Russell, L. J.; Wu, D. Y.; Nguyen, T.; Cramm, D.; Rigopoulos, N.; Wright, N.; Greaves, M. The Suitability of Halloysite Nanotubes as a Fire Retardant for Nylon 6. Polym. Degrad. Stab. 2008, 93, 1971-1978.
  •  
  • 44. Zhao, M.; Liu, P. Preparation of Halloysite Nanotubes/Polystyrene (HNTs/PS) Core-Shell Particles via Soap-Less Microemulsion Polymerization. J. Macromol. Sci. Part B Phys. 2007, 46, 891-897.
  •  
  • 45. Jia, Z.; Luo, Y.; Guo, B.; Yang, B.; Du, M.; Jia, D. Reinforcing and Flame-Retardant Effects of Halloysite Nanotubes on LLDPE. Polymer-Plastics Technol. Eng. 2009, 48, 607-613.
  •  
  • 46. Liu, M.; Guo, B.; Du, M.; Jia, D. Drying Induced Aggregation of Halloysite Nanotubes in Polyvinyl Alcohol/Halloysite Nanotubes Solution and Its Effect on Properties of Composite Film. Appl. Phys. A 2007, 88, 391-395.
  •  
  • 47. Liu, C.; Luo, Y. F.; Jia, Z. X.; Zhong, B. C.; Li, S. Q.; Guo, B. C.; Jia, D. M. Enhancement of Mechanical Properties of Poly(vinyl chloride) with Polymethyl Methacrylate-Grafted Halloysite Nanotube. Express Polym. Lett. 2011, 5, 591-603.
  •  
  • 48. Jia, Z.; Guo, B.; Jia, D. Advances in Rubber/Halloysite Nanotubes Nanocomposites. J. Nanosci. Nanotechnol. 2014, 14, 1758-1771.
  •  
  • 49. Liu, M.; Jia, Z.; Jia, D.; Zhou, C. Recent Advance in Research on Halloysite Nanotubes-Polymer Nanocomposite. Prog. Polym. Sci. 2014, 39, 1498-1525.
  •  
  • 50. Hayeemasae, N.; Sensem, Z.; Surya, I.; Sahakaro, K.; Ismail, H. Synergistic Effect of Maleated Natural Rubber and Modified Palm Stearin as Dual Compatibilizers in Composites Based on Natural Rubber and Halloysite Nanotubes. Polymers 2020, 12, 766.
  •  
  • 51. Ismail, H.; Salleh, S. Z.; Ahmad, Z. Curing Characteristics, Mechanical, Thermal, and Morphological Properties of Halloysite Nanotubes (HNTs)-filled Natural Rubber Nanocomposites. Polymer-Plastics Technol. Eng. 2011, 50, 681-688.
  •  
  • 52. Lei, Y.; Tang, Z.; Zhu, L.; Guo, B.; Jia, D. Functional Thiol Ionic Liquids as Novel Interfacial Modifiers in SBR/HNTs Composites.Polymer 2011, 52, 1337-1344.
  •  
  • 53. Du, M.; Guo, B.; Lei, Y.; Liu, M.; Jia, D. Carboxylated Butadieneestyrene Rubber/Halloysite Nanotube Nanocomposites: Interfacial Interaction and Performance. Polymer 2008, 49, 4871-4876.
  •  
  • 54. Rybinski, P.; Janowska, G.; Jozwiak, M.; Paja˛ A. K. Thermal Properties and Flammability of Nanocomposites Based on Diene Rubbers and Naturally Occurring and Activated Halloysite Nanotubes. J. Therm. Analysis Calorim. 2012, 107, 1243-1249.
  •  
  • 55. Ismail, H.; Pasbakhsh, P.; Fauzi, M. N. A.; Bakar, A. A. Morphological, Thermal and Tensile Properties of Halloysite Nanotubes Filled Ethylene Propylene Diene Monomer (EPDM) Nanocomposites. Polym. Test. Polym. Test. 2008, 27, 841-850.
  •  
  • 56. Pasbakhsh, P.; Ismail, H.; Fauzi, M. N. A.; Bakar, A. A. Influence of Maleic Anhydride Grafted Ethylene Propylene Diene Monomer (MAH-g-EPDM) on the Properties of EPDM Nanocomposites Reinforced by Halloysite Nanotubes. Polym. Test. 2009, 28, 548-559.
  •  
  • 57. Pasbakhsh, P.; Ismail, H.; Fauzi, M. N. A.; Bakar, A. A. EPDM/Modified Halloysite Nanocomposites. Appl. Clay Sci. 2010, 48, 405-413.
  •  
  • 58. Rooj, S.; Das, A.; Heinrich, G. Tube-like Natural Halloysite/Fluoroelastomer Nanocomposites with sImultaneous Enhanced Mechanical, Dynamic Mechanical and Thermal Properties. Eur. Polym. J. 2011, 47, 1746-1755.
  •  
  • 59. Jia, Z.-X.; Luo, Y.-F.; Yang, S.-Y.; Guo, B.-C.; Du, M.-L.; Jia, D.-M. Morphology, Interfacial Interaction and Properties of Styrene-butadiene Rubber/Modified Halloysite Nanotube Nanocomposites.Chin. J. Polym. Sci. 2011, 27, 857-864.
  •  
  • 60. Jia, Z.; Luo, Y.; Yang, S.; Du, M.; Guo, B.; Jia, D. Styrene-Butadiene Rubber/Halloysite Nanotubes Composites Modified by Epoxidized Natural Rubber. J. Nanosci. Nanotechnol. 2011, 11, 10958-10962.
  •  
  • 61. Guo, B.; Lei, Y.; Chen, F.; Liu, X.; Du, M.; Jia, D. Styreneebutadiene Rubber/Halloysite Nanotubes Nanocomposites Modified by Methacrylic Acid. Appl. Surf. Sci. 2008, 255, 2715-2722.
  •  
  • 62. Guo, B.; Chen, F.; Lei, Y.; Liu, X.; Wan, J.; Jia, D. Styrene-Butadiene Rubber/Halloysite Nanotubes Nanocomposites Modified by Sorbic Acid. Appl. Surf. Sci. 2009, 255, 7329-7336.
  •  
  • 63. Hwang, W. G.; Wei, K. H. Mechanical Thermal and Barrier Properties of NBR /Organosilicate Nanocomposites. Polym. Eng. Sci. 2004, 44, 2117-2124.
  •  
  • 64. Mao, X.; Xu, S.; Wu, C. Dynamic Mechanical Properties of EPDM Rubber Blends. Polym.-Plast. Technol. Eng. 2008, 47, 209-214.
  •  
  • 65. Botros, S. H.; Tawfic, M. L. Compatibility and Thermal Stability of EPDM-NBR Elastomer Blends. J. Elasto. Plast. 2005, 37, 299-317.
  •  
  • 66. AL-Gahtani, S. A. Mechanical Properties of Acrylonitrile Butadiene/Ethylene Propylene Diene Monomer Blends: Effects of Blend Ratio and Filler Addition. J. Am. Sci. 2011, 7, 804-809.
  •  
  • 67. Theja, R.; Kilari, N.; Vishvanathperumal, S.; Navaneethakrishnan, V. Modeling Tensile Modulus of Nanoclay-Filled Ethylene-Propylene-Diene Monomer/Styrene-Butadiene Rubber Using Composite Theories. J. Rubber Res. 2021, 24, 847-856.
  •  
  • 68. Vishvanathperumal, S.; Navaneethakrishnan, V.; Gopalakannan, S. The Effect of Nanoclay and Hybrid Iller on Curing Characteristics, Mechanical Properties and Swelling Resistance of Ethylene Vinyl Acetate/Styrene Butadiene Rubber Blend Composite. J. Adv. Microsc. Res. 2018, 13, 469-476.
  •  
  • 69. Vishvanathperumal, S.; Gopalakannan, S. Swelling Properties, Compression Set Behavior and Abrasion Resistance of Ethylene-propylene-diene Rubber/Styrene Butadiene Rubber Blend Nanocomposites. Polym. Korea 2017, 41, 433-442.
  •  
  • 70. Jia, Z.-X.; Luo, Y.-F.; Yang, S.-Y.; Guo, B.-C.; Du, M.-L.; Jia, D.-M. Morphology, Interfacial Interaction and Properties of Styrene-butadiene Rubber/Modified Halloysite Nanotubes Nanocomposites. Chinese J. Polym. Sci. 2009, 27, 857-864.
  •  
  • 71. Liu, L.; Jia, D. M.; Luo, Y. F.; Guo, B. C. Preparation, Structure and Properties of Nitrile-butadiene Rubber-organoclay Nano- composites by Reactive Mixing Intercalation Method.J. Appl. Polym. Sci. 2006, 100, 1905-1913.
  •  
  • 72. Kader, M.; Kim, K.; Lee, Y.-S.; Nah, C. Preparation and Properties of Nitrile Rubber/Montmorillonite Nanocomposites via Latex Blending. J. Mater. Sci. 2006, 41, 7341-7352.
  •  
  • 73. Gent, A. N.; Pulford, C. T. R. Mechanisms of Rubber Abrasion. J. Appl. Polym. Sci. 1983, 28, 943-960.
  •  
  • 74. Seehra, M. S.; Yalamanchi, M.; Singh, V. Structural Characteristics and Swelling Mechanism of Two Commercial Nitrile-butadiene Elastomers in Various Fluids.Polym. Test. 2012, 4, 564-571.
  •  
  • 75. Lucht, L. M.; Peppas, N. A. Transport of Penetrants in the Macromolecular Structure of Coals. V. Anomalous Transport in Pretreated Coal Particles. J. Appl. Polym. Sci. 1987, 33, 1557-1566.
  •  
  • 76. Aminabhavi, T. M.; Khinnavar, R. S. Diffusion and Sorption of Organic Liquids Through Polymer Membranes: 10. Polyurethane, Nitrile-butadiene Rubber and Epichlorohydrin Versus Aliphatic Alcohols (C1-C5). Polymer 1993, 34, 1006-1018.
  •  
  • 77. Stephen, R.; Joseph, K.; Oommen, Z.; Thomas, S. Molecular Transport of Aromatic Solvents Through Microcomposites of Natural Rubber (NR), Carboxylated Styrene Butadiene Rubber (XSBR) and Their Blends.Compos. Sci. Technol. 2007, 67, 1187-1194.
  •  
  • 78. Unnikrishnan, G.; Thomas, S. Molecular Transport of Benzene and Methyl-substituted Benzenes into Filled Natural Rubber Sheets.J. Appl. Polym. Sci. 1996, 60, 963-970.
  •  
  • 79. Flory, P. J.; Rehner, J. Statistical Mechanics of Cross‐Linked Polymer Networks I. Rubberlike Elasticity. J. Chem. Phys. 1943, 11, 512-521.
  •  
  • 80. Vishvanathperumal, S.; Gopalakannan, S. Effects of the Nanoclay and Crosslinking Systems on the Mechanical Properties of Ethylene-Propylene-Diene Monomer/styrene Butadiene Rubber Blends Nanocomposite. Silicon 2019, 11, 117-135.
  •  
  • 81. Vishvanathperumal, S.; Anand, G. Effect of Nanoclay/Nanosilica on the Mechanical Properties, Abrasion and Swelling Resistance of EPDM/SBR Composites. Silicon 2020, 12, 1925-1941.
  •  
  • 82. Vishvanathperumal, S.; Anand, G. Effect of Nanosilica on the Mechanical Properties, Compression Set, Morphology, Abrasion and Swelling Resistance of Sulphur Cured EPDM/SBR Composites. Silicon 2022, 14, 3523-3534.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2022; 46(6): 728-743

    Published online Nov 25, 2022

  • 10.7317/pk.2022.46.6.728
  • Received on May 19, 2022
  • Revised on Aug 5, 2022
  • Accepted on Aug 30, 2022

Correspondence to

  • R. Sundar
  • Department of Mechanical Engineering, E.G.S. Pillay Engineering College, Nagappattinam, Tamilnadu 611002, India

  • E-mail: sundar@egspec.org