Article
  • Tailoring Network Structure of Photopolymerizable Gelatin Hydrogels as 3D Cell Culture Scaffolds
  • Youbin Park, Jong Hwan Sung, and Bumsang Kim

  • Department of Chemical Engineering, Hongik University, Wausanro 94, Mapo-gu, Seoul 04066, Korea

  • 3D 세포배양 스캐폴드로 사용하기 위한 광중합성 젤라틴 수화젤의 네트워크 구조 제어
  • 박유빈 · 성종환 · 김범상

  • 홍익대학교 화학공학과

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Lee, S. H.; Shim, K. Y.; Kim, B.; Sung, J. H. Hydrogel-Based Three-Dimensional Cell Culture for Organ-on-a-Chip Applications. Biotechnol. Prog. 2017, 33, 580-589.
  •  
  • 2. Miller, J. S.; Stevens, K. R.; Yang, M. T.; Baker, B. M.; Nguyen, D. H. T.; Cohen, D. M.; Toro, E.; Chen, A. A.; Galie, P. A.; Yu, X.; Chaturvedi, R.; Bhatia, S. N.; Chen, C. S. Rapid Casting of Patterned Vascular Networks for Perfusable Engineered Three-dimensional Tissues. Nat. Mater. 2012, 11, 768-774.
  •  
  • 3. Peppas, N. A.; Bures, P.; Leobandung, W.; Ichikawa, H. Hydrogels in Pharmaceutical Formulations. Eur. J. Pharm. Biopharm. 2000, 50, 27-46.
  •  
  • 4. Rosales, A. M.; Anseth, K. S. The Design of Reversible Hydrogels to Capture Extracellular Matrix Dynamics. Nat. Rev. Mater. 2016, 1, 15012.
  •  
  • 5. Tan, Q. G.; Li, S. G.; Ren, J.; Chen, C. Fabrication of Porous Scaffolds with a Controllable Microstructure and Mechanical Properties by Porogen Fusion Technique. Int. J. Mol. Sci. 2011, 12, 890-904.
  •  
  • 6. Pangesty, A. I.; Todo, M. Improvement of Mechanical Strength of Tissue Engineering Scaffold Due to the Temperature Control of Polymer Blend Solution. J. Funct. Biomater. 2021, 12, 47.
  •  
  • 7. Engler, A. J.; Sen, S.; Sweeney, H. L.; Discher, D. E. Matrix Elasticity Directs Stem Cell Lineage Specification. Cell 2006, 126, 677-689.
  •  
  • 8. Discher, D. E.; Janmey, P.; Wang, Y.-L. Tissue Cells Feel and Respond to the Stiffness of Their Substrate. Science 2005, 310, 1139-1143.
  •  
  • 9. Han, S. Y.; Wu, J. Three-dimensional(3D) Scaffolds as Powerful Weapons for Tumor Immunotherapy. Bioact. Mater. 2022, 17, 300-319.
  •  
  • 10. Eckert, R. L.; Rorke, E. A. Molecular Biology of Keratinocyte Differentiation. Environ. Health Perspect. 1989, 80, 109-116.
  •  
  • 11. Annabi, N.; Nichol, J. W.; Zhong, X.; Ji, C.; Koshy, S.; Khademhosseini, A.; Dehghani, F. Controlling the Porosity and Microarchitecture of Hydrogels for Tissue Engineering. Tissue. Eng. Part B Rev. 2010, 16, 371-383.
  •  
  • 12. Wang, H. Y.; Zhou, X. Q.; Wang, J.; Zhang, X. P.; Zhu, M. F.; Wang, H. J. Fabrication of Channeled Scaffolds Through Polyelectrolyte Complex (PEC) Printed Sacrificial Templates for Tissue Formation. Bioact. Mater. 2022, 17, 261-275.
  •  
  • 13. Galis, Z. S.; Khatri, J. J. Matrix Metalloproteinases in Vascular Remodeling and Atherogenesis: The Good, the Bad, and the Ugly. Circ. Res. 2002, 90, 251-262.
  •  
  • 14. Ng, K. W.; Hutmacher, D. W. Reduced Contraction of Skin Equivalent Engineered Using Cell Sheets Cultured in 3D Matrices. Biomaterials 2006, 27, 4591-4598.
  •  
  • 15. Van den Steen, P. E.; Dubois, B.; Nelissen, I.; Rudd, P. M.; Dwek, R. A.; Opdenakker, G. Biochemistry and Molecular Biology of Gelatinase B or Matrix Metalloproteinase-9 (MMP-9). Crit. Rev. Biochem. Mol. Biol. 2002, 37, 375-536.
  •  
  • 16. Zhong, S. Teo, W. E.; Zhu, X.; Beuerman, R.; Ramakrishna, S.; Yung, L. Y. Formation of Collagen-Glycosaminoglycan Blended Nanofibrous Scaffolds and Their Biological Properties. Biomacromolecules 2005, 6, 2998-3004.
  •  
  • 17. Sell, S. A.; Wolfe, P. S.; Garg, K.; McCool, J. M.; Rodriguez, I. A.; Bowlin, G. L. The Use of Natural Polymers in Tissue Engineering: A Focus on Electrospun Extracellular Matrix Analogues. Polymers 2010, 2, 522-553.
  •  
  • 18. Talman, E. A.; Boughner, D. R. Glutaraldehyde Fixation Alters the Internal Shear Properties of Porcine Aortic Heart Valve Tissue. Ann. Thorac. Surg. 1995, 60, S369-S373.
  •  
  • 19. Van den Bulcke, A. I.; Bogdanov, B.; De Rooze, N.; Schacht, E. H.; Cornelissen, M.; Berghmans, H. Structural and Rheological Properties of Methacrylamide Modified Gelatin Hydrogels. Biomacromolecules 2000, 1, 31-38.
  •  
  • 20. Lee, A. G.; Arena, C. P.; Beebe, D. J. Palecek, S. P. Development of Macroporous Poly(ethylene glycol) Hydrogel Arrays within Microfluidic Channels. Biomacromolecules 2010, 11, 3316-3324.
  •  
  • 21. Shin, H.; Olsen, B. D.; Khademhosseini, A. The Mechanical Properties and Cytotoxicity of Cell-laden Double-network Hydrogels Based on Photocrosslinkable Gelatin and Gellan Gum Biomacromolecules. Biomaterials 2012, 33, 3143-3152.
  •  
  • 22. Hwang, J. W.; Noh, S. M.; Kim, B.; Jung, H. W. Gelation and Crosslinking Characteristics of Photopolymerized Poly(ethylene glycol) Hydrogels. J. Appl. Poly. Sci. 2015, 132, 41939.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2022; 46(6): 793-798

    Published online Nov 25, 2022

  • 10.7317/pk.2022.46.6.793
  • Received on Jul 19, 2022
  • Revised on Aug 2, 2022
  • Accepted on Aug 10, 2022

Correspondence to

  • Bumsang Kim
  • Department of Chemical Engineering, Hongik University, Wausanro 94, Mapo-gu, Seoul 04066, Korea

  • E-mail: bskim@hongik.ac.kr