Article
  • Effects on the Properties of Diketopyrrolopyrrole-based Polymer via Inserting Oxadiazoles on Their Main Chains
  • Rajalingam Agneeswari, Danbi Kim*, Vellaiappillai Tamilavan*, Chnan-gi Shin, Sung Heum Park*, and Youngeup Jin

  • Department of Industrial Chemistry, Pukyong National University, Busan 48513, Korea
    *Department of Physics, Pukyong National University, Busan 48513, Korea

  • Diketopyrrolopyrrole계 고분자 주사슬에 Oxadiazoles을 삽입함에 따른 고분자 특성 변화에 관한 연구
  • Rajalingam Agneeswari · 김단비* · Vellaiappillai Tamilavan* · 신찬기 · 박성흠* · 진영읍

  • 부경대학교 공업화학과, *부경대학교 물리학과

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Fu, H.; Wang, Z.; Sun, Y. Polymer Donors for High‐Performance Non‐Fullerene Organic Solar Cells. Angew. Chem. 2019, 131, 4488-4499.
  •  
  • 2. Cho, N.; Kim, T.-D.; Jen, A. K.-Y. Reduced Recombination Losses with Enhanced Dielectric Permittivity of Donor Polymers in Polymer Solar Cells. Polym. Korea 2018, 42, 708-713.
  •  
  • 3. Lu, L.; Zheng, T.; Wu, Q.; Schneider, A. M.; Zhao, D.; Yu, L. Recent Advances in Bulk Heterojunction Polymer Solar Cells. Chem. Rev. 2015, 115, 126660-12731.
  •  
  • 4. Do, T. T.; Ha, Y. E.; Kim, J. H. Synthesis and Characterization of π-Conjugated Polymer Based on Phthalimide Derivative and its Application for Polymer Solar Cells. Polym. Korea 2013, 37, 694-701.
  •  
  • 5. Gunasekaran, R. K.; Rana, P. J. S.; Park, S. H.; Tamilavan, V.; Karuppanan, S.; Kim, H. J.; Prabakar, K. Open Atmospheric Processed Perovskite Solar Cells Using Dopant-Free, Highly Hydrophobic Hole-Transporting Materials: Influence of Thiophene and Selenophene π-Spacers on Charge Transport and Recombi- nation Properties. Sol. Energy Mater. Sol. Cells 2019, 199, 66-74.
  •  
  • 6. Rana, P. J. S.; Gunasekaran, R. K.; Park, S. H.; Tamilavan, V.; Karuppanan, S.; Kim, H. J.; Prabakar, K. Open Atmosphere-Processed Stable Perovskite Solar Cells Using Molecular Engineered, Dopant-Free, Highly Hydrophobic Polymeric Hole-Transporting Materials: Influence of Thiophene and Alkyl Chain on Power Conversion Efficiency. J. Phys. Chem. C 2019, 123, 8560-8568.
  •  
  • 7. Liu, W.; Ma, Y.; Wang, Z.; Mu, Z.; Gao, W.; Fan, W.; Li, W. S.; Zhang, Q. Improving the Hole Transport Performance of Perovskite Solar Cells through Adjusting the Mobility of the As-Synthesized Conjugated Polymer. J. Mater. Chem. C 2021, 9, 3421-3428.
  •  
  • 8. Paterson, A. F.; Singh, S.; Fallon, K. J.; Hodsden, T.; Han, Y.; Schroeder, B. C.; Bronstein, H.; Heeney, M.; McCulloch, I.; Anthopoulos, T. D. Recent Progress in High-Mobility Organic Transistors: A Reality Check. Adv. Mater. 2018, 30, 1801079.
  •  
  • 9. Cheon, H. J.; An, T. K.; Kim, Y. H. Diketopyrrolopyrrole (DPP)-Based Polymers and Their Organic Field-Effect Transistor Applications: A Review. Macromol. Res. 2022, 30, 71-84.
  •  
  • 10. Low, J. Y.; Aljunid Merican, Z. M.; Hamza, M. F. Polymer Light Emitting Diodes (PLEDs): An Update Review on Current Innovation and Performance of Material Properties. Mater. Today Proc. 2019, 16, 1909-1918.
  •  
  • 11. Van der Zee, B.; Li, Y.; Wetzelaer, G. J. A. H.; Blom, P. W. M. Efficiency of Polymer Light-Emitting Diodes: A Perspective. Adv. Mater. 2022, 34, 2108887.
  •  
  • 12. Liu, Y.; Zhao, J.; Li, Z.; Mu, C.; Ma, W.; Hu, H.; Jiang, K.; Lin, H.; Ade, H.; Yan, H. Aggregation and Morphology Control Enables Multiple Cases of High-Efficiency Polymer Solar Cells. Nat. Commun. 2014, 5, 5293.
  •  
  • 13. Jin, Y.; Chen, Z.; Xiao, M.; Peng, J.; Fan, B.; Ying, L.; Zhang, G.; Jiang, X. F.; Yin, Q.; Liang, Z.; Huang, F.; Cao, Y. Thick Film Polymer Solar Cells Based on Naphtho[1,2-c:5,6-c]Bis[1,2,5]- Thiadiazole Conjugated Polymers with Efficiency over 11%. Adv. Energy Mater. 2017, 7, 1700944.
  •  
  • 14. Lee, J.; Tamilavan, V.; Rho, K. H.; Keum, S.; Park, K. H.; Han, D.; Jung, Y. K.; Yang, C.; Jin, Y.; Jang, J. W.; Jeong, J. H.; Park, S. H. Overcoming Fill Factor Reduction in Ternary Polymer Solar Cells by Matching the Highest Occupied Molecular Orbital Energy Levels of Donor Polymers. Adv. Energy Mater. 2018, 8, 1702251.
  •  
  • 15. Tamilavan, V.; Liu, Y.; Lee, J.; Jung, Y. K.; Son, S.; Jeong, J.; Park, S. H. Highly Crystalline New Benzodithiophene-Benzothiadiazole Copolymer for Efficient Ternary Polymer Solar Cells with an Energy Conversion Efficiency of over 10%. J. Mater. Chem. C 2018, 6, 4281-4289.
  •  
  • 16. Aqoma, H.; Park, S.; Park, H. Y.; Hadmojo, W. T.; Oh, S. H.; Nho, S.; Kim, D. H.; Seo, J.; Park, S.; Ryu, D. Y.; Cho, S.; Jang, S. Y. 11% Organic Photovoltaic Devices Based on PTB7-Th: PC71BM Photoactive Layers and Irradiation-Assisted ZnO Electron Transport Layers. Adv. Sci. 2018, 5, 1700858.
  •  
  • 17. Hong, S.; Song, C. E.; Lim, E. Polymer Solar Cells based on a Furan-containing Asymmetric Nonfullerene Acceptor. Polym. Korea 2020, 44, 741-746.
  •  
  • 18. Qin, J.; Zhang, L.; Zuo, C.; Xiao, Z.; Yuan, Y.; Yang, S.; Hao, F.; Cheng, M.; Sun, K.; Bao, Q.; Bin, Z.; Jin, Z.; Ding, L. A Chlorinated Copolymer Donor Demonstrates a 18.13% Power Conversion Efficiency. J. Semicond. 2021, 42, 010501.
  •  
  • 19. Jin, K.; Xiao, Z.; Ding, L. 18.69% PCE from Organic Solar Cells. J. Semicond. 2021, 42, 060502.
  •  
  • 20. Zhan, L.; Li, S.; Xia, X.; Li, Y.; Lu, X.; Zuo, L.; Shi, M.; Chen, H.; Liu, F.; Zhou, L.; Liu, W. W.; Zhou, Z.; Yue, Q.; Zheng, W.; Sun, R.; Liu, W. W.; Xu, S.; Fan, H.; Feng, L.; Yi, Y.; Zhang, W.; Zhu, X. Organic Solar Cells with 18% Efficiency Enabled by an Alloy Acceptor: A Two-in-One Strategy. Adv. Mater. 2021, 33, 2100830.
  •  
  • 21. Zheng, Z.; Wang, J.; Bi, P.; Ren, J.; Wang, Y.; Yang, Y.; Liu, X.; Zhang, S.; Hou, J. Tandem Organic Solar Cell with 20.2% Efficiency. Joule 2022, 6, 171-184.
  •  
  • 22. Wang, J.; Zhang, M.; Lin, J.; Zheng, Z.; Zhu, L.; Bi, P.; Liang, H.; Guo, X.; Wu, J.; Wang, Y.; Yu, L.; Li, J.; Lv, J.; Liu, X.; Liu, F.; Hou, J.; Li, Y. An Asymmetric Wide-Bandgap Acceptor Simultaneously Enabling Highly Efficient Single-Junction and Tandem Organic Solar Cells. Energy Environ. Sci. 2022, 15, 1585-1593.
  •  
  • 23. Wadsworth, A.; Moser, M.; Marks, A.; Little, M. S.; Gasparini, N.; Brabec, C. J.; Baran, D.; McCulloch, I. Critical Review of the Molecular Design Progress in Non-Fullerene Electron Acceptors towards Commercially Viable Organic Solar Cells. Chem. Soc. Rev. 2019, 48, 1596-1625.
  •  
  • 24. Dou, L.; Gao, J.; Richard, E.; You, J.; Chen, C. C.; Cha, K. C.; He, Y.; Li, G.; Yang, Y. Systematic Investigation of Benzo- dithiophene- and Diketopyrrolopyrrole- Based Low-Bandgap Polymers Designed for Single Junction and Tandem Polymer Solar Cells. J. Am. Chem. Soc. 2012, 134, 10071-10079.
  •  
  • 25. Dou, L.; You, J.; Yang, J.; Chen, C.-C.; He, Y.; Murase, S.; Moriarty, T.; Emery, K.; Li, G.; Yang, Y. Tandem Polymer Solar Cells Featuring a Spectrally Matched Low-Bandgap Polymer. Nat. Photonics 2012, 6, 180-185.
  •  
  • 26. Dou, L.; Chang, W. H.; Gao, J.; Chen, C. C.; You, J.; Yang, Y. A Selenium-Substituted Low-Bandgap Polymer with Versatile Photovoltaic Applications. Adv. Mater. 2013, 25, 825-831.
  •  
  • 27. Zhao, C.; Guo, Y.; Zhang, Y.; Yan, N.; You, S.; Li, W. Diketo- pyrrolopyrrole-Based Conjugated Materials for Non-Fullerene Organic Solar Cells. J. Mater. Chem. A 2019, 7, 10174-10199.
  •  
  • 28. Bao, W. W.; Li, R.; Dai, Z. C.; Tang, J.; Shi, X.; Geng, J. T.; Deng, Z. F.; Hua, J. Diketopyrrolopyrrole (DPP)-Based Materials and Its Applications: A Review. Front. Chem. 2020, 8, 679.
  •  
  • 29. Lim, E.; Influence of CN Substitution on DPP-furan-based Small-molecule Acceptors for Polymer Solar Cells. Polym. Korea 2020, 44, 408-414.
  •  
  • 30. Rasool, S.; Hoang, Q. V.; Vu, D. Van; Song, C. E.; Lee, H. K.; Lee, S. K.; Lee, J. C.; Moon, S. J.; Shin, W. S. High-Efficiency Single and Tandem Fullerene Solar Cells with Asymmetric Monofluorinated Diketopyrrolopyrrole-Based Polymer. J. Energy Chem. 2021, 64, 236-245.
  •  
  • 31. Jiang, X.; Xu, Y.; Wang, X.; Wu, Y.; Feng, G.; Li, C.; Ma, W.; Li, W. Non-Fullerene Organic Solar Cells Based on Diketopyrrolo- pyrrole Polymers as Electron Donors and ITIC as an Electron Acceptor. Phys. Chem. Chem. Phys. 2017, 19, 8069-8075.
  •  
  • 32. van der Pol, T. P. A.; Li, J.; van Gorkom, B. T.; Colberts, F. J. M.; Wienk, M. M.; Janssen, R. A. J. Analysis of the Performance of Narrow-Bandgap Organic Solar Cells Based on a Diketopyrro- lopyrrole Polymer and a Nonfullerene Acceptor. J. Phys. Chem. C 2021, 125, 5505-5517.
  •  
  • 33. Kranthiraja, K.; Murotani, K.; Hamada, F.; Saeki, A. Diketo- pyrrolopyrrole-Based Chlorinated Bithiophene Polymers for Organic Solar Cells: Effect of Thiophene or Pyridine Flank. ACS Appl. Electron. Mater. 2022, 4, 2086-2094.
  •  
  • 34. Hamciuc, E.; Hamciuc, C.; Cazacu, M. Poly(1,3,4-Oxadiazole-Ether-Imide)s and Their Polydimethylsiloxane-Containing Copolymers. Eur. Polym. J. 2007, 43, 4739-4749.
  •  
  • 35. Vellis, P. D.; Mikroyannidis, J. A.; Cho, M. J.; Choi, D. H. Carbazolevinylene-Based Polymers and Model Compounds with Oxadiazole and Triphenylamine Segments: Synthesis, Photo- physics, and Electroluminescence. J. Polym. Sci. Part A Polym. Chem. 2008, 46, 5592-5603.
  •  
  • 36. Nie, Y.; Zhao, B.; Tang, P.; Jiang, P.; Tian, Z.; Shen, P.; Tan, S. Synthesis and Photovoltaic Properties of Copolymers Based on Benzo[1,2-b:4,5-B′]Dithiophene and Thiophene with Electron-Withdrawing Side Chains. J. Polym. Sci. Part A Polym. Chem. 2011, 49, 3604-3614.
  •  
  • 37. Agneeswari, R.; Tamilavan, V.; Song, M.; Kang, J. W.; Jin, S. H.; Hyun, M. H. Synthesis of Polymers Containing 1,2,4-Oxadiazole as an Electron-Acceptor Moiety in Their Main Chain and Their Solar Cell Applications. J. Polym. Sci. Part A Polym. Chem. 2013, 51, 2131-2141.
  •  
  • 38. Agneeswari, R.; Tamilavan, V.; Hyun, M. H. Synthesis and Characterization of 1,2,4-Oxadiazole-Based Deep-Blue and Blue Color Emitting Polymers. Bull. Korean Chem. Soc. 2014, 35, 513-517.
  •  
  • 39. Agneeswari, R.; Tamilavan, V.; Song, M.; Hyun, M. H. Property Modulation of Benzodithiophene-Based Polymers via the Incorporation of a Covalently Bonded Novel 2,1,3-Benzo- thiadiazole-1,2,4-Oxadiazole Derivative in Their Main Chain for Polymer Solar Cells. J. Mater. Chem. C 2014, 2, 8515-8524.
  •  
  • 40. Tamilavan, V.; Kim, D.; Yang, H.-S.; Shin, I.; Kim, J.; Lee, B. R.; Park, S. H. Enhanced Photovoltaic Performance of Benzothiadi- azole-Based Polymers by Controlling their Backbone Planarity for Organic Solar Cells. Macromol. Chem. Phys. 2022, 223, 2200222.
  •  
  • 41. Tamilavan, V.; Song, M.; Jin, S.-H.; Hyun, M. H. Synthesis of Conjugated Polymers with Broad Absorption Bands and Photo- voltaic Properties as Bulk Heterojuction Solar Cells. Polymer 2011, 52, 2384-2390.
  •  
  • 42. Tamilavan, V.; Song, M.; Ban, T.-W.; Jin, S.-H.; Hyun, M. H. Synthesis and Photovoltaic Properties of 1-(2,6-Diisopropyl- phenyl)-2,5-di(2-thienyl)pyrrole-based Low-bandgap Polymers. Polym. Bull. 2012, 69, 439-454.
  •  
  • 43. Tamilavan, V.; Song, M.; Kim, S.; Agneeswari, R.; Kang, J.-W.; Hyun, M. H. Synthesis of N-[4-Octylphenyl]dithieno[3,2-b:2′,3′-d]pyrrole-based Broad Absorbing Polymers and Their Photovoltaic Applications. Polymer 2013, 54, 3198-3205.
  •  
  • 44. Yan, T.; Ge, J.; Lei, T.; Zhang, W.; Song, W.; Fanady, B.; Zhang, D.; Chen, S.; Peng, R.; Ge, Z. 16.55% Efficiency Ternary Organic Solar Cells Enabled by Incorporating a Small Molecular Donor. J. Mater. Chem. A 2019, 7, 25894-25899.
  •  
  • 45. Du, X.; Yuan, Y.; Zhou, L.; Lin, H.; Zheng, C.; Luo, J.; Chen, Z.; Tao, S.; Liao, L. S. Delayed Fluorescence Emitter Enables Near 17% Efficiency Ternary Organic Solar Cells with Enhanced Storage Stability and Reduced Recombination Energy Loss. Adv. Funct. Mater. 2020, 30, 1909837.
  •  
  • 46. Li, D.; Zhu, L.; Liu, X.; Xiao, W.; Yang, J.; Ma, R.; Ding, L.; Liu, F.; Duan, C.; Fahlman, M.; Bao, Q. Enhanced and Balanced Charge Transport Boosting Ternary Solar Cells Over 17% Efficiency. Adv. Mater. 2020, 32, 2002344.
  •  
  • 47. Wang, D.; Qin, R.; Zhou, G.; Li, X.; Xia, R.; Li, Y.; Zhan, L.; Zhu, H.; Lu, X.; Yip, H. L.; Chen, H.; Li, C. Z. High-Performance Semitransparent Organic Solar Cells with Excellent Infrared Reflection and See-Through Functions. Adv. Mater. 2020, 32, 2001621.
  •  
  • 48. Chang, L.; Sheng, M.; Duan, L.; Uddin, A. Ternary Organic Solar Cells Based on Non-Fullerene Acceptors: A Review. Org. Electron. 2021, 90, 106063..
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2023; 47(1): 79-86

    Published online Jan 25, 2023

  • 10.7317/pk.2023.47.1.79
  • Received on Oct 20, 2022
  • Revised on Nov 23, 2022
  • Accepted on Nov 28, 2022

Correspondence to

  • Youngeup Jin
  • Department of Industrial Chemistry, Pukyong National University, Busan 48513, Korea

  • E-mail: yjin@pknu.ac.kr