Article
  • Electrochemical Glucose Sensing by Using Glucose Dehydrogenase Enzyme and the Synthesized Poly-ruthenium Mediator
  • Su-Bin Park# , Won-Yong Jeon*,#, and Young-Bong Choi

  • Department of Chemistry, College of Science & Technology, Dankook University, Dandae-ro, Cheonan-si, Chungnam 31116, Korea
    *School of Chemical Engineering, Translational Nanobioscience Research Center,
    and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea

  • 포도당 탈수소효소와 합성된 폴리루테늄 매개체를 이용한 전기화학적 포도당 감지
  • 박수빈# · 전원용*,# · 최영봉

  • 단국대학교 화학과
    *성균관대학교 화학공학과, 트랜스레이셔널 나노바이오사이언스 연구센터, 성균바이오융합과학기술원

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Heller, A; Feldman, B. Electrochemical Glucose Sensors and Their Applications in Diabetes Management. Chem. Rev. 2008, 108, 2482-2505.
  •  
  • 2. Reach, G.; Wilson, G. S. Can Continuous Glucose Monitoring be Used for the Treatment of Diabetes. Anal. Chem. 1992, 64, 381A-386A.
  •  
  • 3. Turner, A. P.; Chen, B.; Piletsky, S. A. In Vitro Diagnostics in Diabetes: Meeting the Challenge. Clin. chem. 1999, 45, 1596-1601.
  •  
  • 4. Kobos, R. K. Enzyme-based Electrochemical Biosensors. TrAC Tre. in Anal. Chem. 1987, 6, 6-9.
  •  
  • 5. Chen, C.; Xie, Q.; Yang, D.; Xiao, H.; Fu, Y.; Tan, Y.; Yao, S. Recent Advances in Electrochemical Glucose Biosensors: a Review. RSC Adv. 2013, 3, 4473-4491.
  •  
  • 6. Wang, J. Glucose Biosensors: 40 Years of Advances and Challenges. Electroanalysis: An Int. J. Dev. Fund. Prac. Asp. Elect. 2001, 13, 983-988.
  •  
  • 7. Okurita, M.; Suzuki, N.; Loew, N.; Yoshida, H.; Tsugawa, W.; Mori, K.; Kojima, K.; Klonoff, D. C.; Sode, K. Engineered Fungus Derived FAD-dependent Glucose Dehydrogenase with Acquired Ability to Utilize Hexaammineruthenium (III) as An Electron Acceptor. Bioelectrochem. 2018, 123, 62-69.
  •  
  • 8. Loew, N.; Tsugawa, W.; Nagae, D.; Kojima, K.; Sode, K. Mediator Preference of Two Different FAD-dependent Glucose Dehydrogenases Employed in Disposable Enzyme Glucose Sensors. Sens. 2017, 17, 2636.
  •  
  • 9. Wang, J. Electrochemical Glucose Biosensors. Chem. Rev. 2008, 108, 814-825.
  •  
  • 10. Horaguchi, Y.; Saito, S.; Kojima, K.; Tsugawa, W.; Ferri, S.; Sode, K. Engineering Glucose Oxidase to Minimize the Influence of Oxygen on Sensor Response. Elect. Act. 2014, 126, 158-161.
  •  
  • 11. Tang, Z.; Louie, R. F.; Lee, J. H.; Lee, D. M.; Miller, E. E.; Kost, G. J. Oxygen Effects on Glucose Meter Measurements with Glucose Dehydrogenase-and Oxidase-based Test Strips for Point-of-care Testing. Crit. Care Med. 2001, 29, 1062-1070.
  •  
  • 12. Okuda-Shimazaki, J.; Yoshida, H.; Sode, K. FAD Dependent Glucose Dehydrogenases-Discovery and Engineering of Representative Glucose Sensing Enzymes. Bioelectrochem. 2020, 132, 107414.
  •  
  • 13. Ferri, S.; Kojima, K.; Sode, K. Review of Glucose Oxidases and Glucose Dehydrogenases: a Bird’s Eye View of Glucose Sensing Enzymes. J. Diab. Sci. Tech. 2011, 5, 1068-1076.
  •  
  • 14. Tsujimura, S.; Kojima, S.; Kano, K.; Ikeda, T.; Sato, M.; Sanada, H.; Omura, H. Novel FAD-dependent Glucose Dehydrogenase for a Dioxygen-insensitive Glucose Biosensor. Bios. Biot. Biochem. 2006, 70, 654-659.
  •  
  • 15. Zakeeruddin, S. M.; Fraser, D. M.; Nazeeruddin, M. K.; Grätzel, M. Towards Mediator Design: Characterization of Tris-(4,4′-substituted-2, 2′-bipyridine) Complexes of Iron (II), Ruthenium (II) and Osmium (II) as Mediators for Glucose Oxidase of Aspergillus Niger and Other Redox Proteins. J. Electroanal. Chem. 1992, 337, 253-283.
  •  
  • 16. Nazeeruddin, M. K.; Zakeeruddin, S. M.; Kalyanasundaram, K. Enhanced Intensities of the Ligand-to-metal Charge-transfer Transitions in Ruthenium (III) and Osmium (III) Complexes of Substituted Bipyridines. J. Phys. Chem. 1993, 97, 9607-9612.
  •  
  • 17. Kim, H. H.; Mano, N.; Zhang, Y.; Heller, A. A Miniature Membrane-less Biofuel Cell Operating Under Physiological Conditions at 0.5 V. J. Electrochem. Soc. 2003, 150, A209.
  •  
  • 18. Jeon, W. Y.; Lee, C. J.; Choi, Y. B.; Lee, B. H.; Jo, H. J.; Jeon, S. Y. Kim, H. H. Glucose Detection via Ru-mediated Catalytic Reaction of Glucose Dehydrogenase. Adv. Mat. Let. 2018, 9, 220-224.
  •  
  • 19. Gregg, B. A.; Heller, A. Cross-linked Redox Gels Containing Glucose Oxidase for Amperometric Biosensor Applications. Anal. Chem. 1990, 62, 258-263.
  •  
  • 20. Qiu, J. D.; Zhou, W. M.; Guo, J.; Wang, R.; Liang, R. P. Amperometric Sensor Based on Ferrocene-modified Multiwalled Carbon Nanotube Nanocomposites as Electron Mediator for the Determination of Glucose. Anal. Biochem. 2009, 385, 264-269.
  •  
  • 21. Kalyanasundaram, K.; Zakeeruddin, S. M.; Nazeeruddin, M. K. Ligand to Metal Charge Transfer Transitions in Ru (III) and Os (III) Complexes of Substituted 2,2'-bipyridines. Coord. Chem. Rev. 1994, 132, 259-264.
  •  
  • 22. Forster, R. J.; Vos, J. G. Synthesis, Characterization, and Properties of a Series of Osmium-and Ruthenium-containing Metallopolymers. Macromolecules 1990, 23, 4372-4377.
  •  
  • 23. Fodor, C.; Bozi, J.; Blazsó, M.; Ivan, B. Thermal Behavior, Stability, and Decomposition Mechanism of Poly(N-vinylimidazole). Macromolecules 2012, 45, 8953-8960.
  •  
  • 24. Geraty, S. M.; Vos, J. G. Synthesis, Characterisation, and Photochemical Properties of a Series of Ruthenium Containing Metallopolymers Based on Poly-N-vinylimidazole. J. Chem. Soc. Dalt. Trans. 1987, 3073-3078.
  •  
  • 25. van der Westhuizen, D.; von Eschwege, K. G.; Conradie, J. Electrochemistry and Spectroscopy of Substituted [Ru (phen) 3] 2+ and [Ru (bpy) 3] 2+ Complexes. Electro. Act. 2019, 320, 134540.
  •  
  • 26. Kavanagh, P.; Leech, D. Improved Synthesis of 4,4′-diamino-2, 2′-bipyridine from 4,4′-dinitro-2, 2′-bipyridine-N,N′-dioxide. Tetra. Let. 2004, 45, 121-123.
  •  
  • 27. Guo, D.; Zhuo, Y. Z.; Lai, A. N.; Zhang, Q. G.; Zhu, A. M.; Liu, Q. L. Interpenetrating Anion Exchange Membranes Using Poly (1-vinylimidazole) as Bifunctional Crosslinker for Fuel Cells. J. Mem. Sci. 2016, 518, 295-304.
  •  
  • 28. Zhao, W.; Tang, Y.; Xi, J.; Kong, J. Functionalized Graphene Sheets with Poly(ionic liquid) s and High Adsorption Capacity of Anionic Dyes. App. Sur. Sci. 2015, 326, 276-284.
  •  
  • 29. Talu, M.; Demiroğlu, E. U.; Yurdakul, Ş.; Badoğlu, S. FTIR, Raman and NMR Spectroscopic and DFT Theoretical Studies on Poly(N-vinylimidazole). Spect. Act. Part A: Mole. Bio. Spec. 2015, 134, 267-275.
  •  
  • 30. Edmiston, M. J. An Evaluation of Surface-Enhanced Raman Spectroscopy (SERS) as a Chemical Sensing Technique. University of Glasgow (United Kingdom), 1991.
  •  
  • 31. Athanas, A. B.; Subramaniam, K.; Thangaraj, S.; Kalaiyar, S. Amine Functionalized Homoleptic Ruthenium (II) Sensitizer for Dye-sensitized Solar Cells: a Combined Effect of Ancillary Ligands and Co-sensitization. Int. J. En. Res. 2020, 44, 1899-1908.
  •  
  • 32. Nazeeruddin, M. K.; Zakeeruddin, S. M.; Kalyanasundaram, K. Enhanced Intensities of the Ligand-to-metal Charge-transfer Transitions in Ruthenium (III) and Osmium (III) Complexes of Substituted Bipyridines. J. Phys. Chem. 1993, 97, 9607-9612.
  •  
  • 33. Pekel, N.; Savaş, H.; Güven, O. Complex Formation and Adsorption of V 3+, Cr 3+ and Fe 3+ ions with Poly(N-vinylimidazole). Col. Poly. Sci. 2002, 280, 46-51.
  •  
  • 34. Guo, J.; Yu, P.; Wang, H.; Zhao, H. Design and Synthesis of 4, 4′-disubstituted-[2,2′]-bipyridines for Catalyzing CO/styrene Copolymerization with Palladium (II). Trans. Tian. Univ. 2015, 21, 406-411.
  •  
  • 35. Lippert, J. L.; Robertson, J. A.; Havens, J. R.; Tan, J. S. Structural Studies of Poly(N-vinylimidazole) Complexes by Infrared and Raman Spectroscopy. Macromolecules 1985, 18, 63-67.
  •  
  • 36. Küçükyavuz, Z.; Küçükyavuz, S.; Abbasnejad, N. Electrically Conductive Polymers from Poly(N-vinylimidazole). Poly. 1996, 37, 3215-3218.
  •  
  • 37. Freitas, C.; Müller, R. H. Effect of Light and Temperature on Zeta Potential and Physical Stability in Solid Lipid Nanoparticle (SLNTM) Dispersions. Int. Pharm. 1998, 168, 221-229.
  •  
  • 38. Kissinger, P. T.; Heineman, W. R. Cyclic Voltammetry. J. Chem. Edu. 1983, 60, 702.
  •  
  • 39. Leftheriotis, G.; Papaefthimiou, S.; Yianoulis, P. Dependence of the Estimated Diffusion Coefficient of LixWO3 Films on the Scan Rate of Cyclic Voltammetry Experiments. Sol. S. Ion. 2007, 178, 259-263.
  •  
  • 40. Hagel, A. F.; Albrecht, H.; Dauth, W.; Hagel, W.; Vitali, F.; Ganzleben, I.; Schultis, H. W.; Konturek, P. C.; Stein, J.; Neurath, M. F.; Raithel, M. Plasma Concentrations of Ascorbic Acid in a Cross Section of the German Population. J. Int. Med. Res. 2018, 46, 168-174.
  •  
  • 41. Hsine, Z.; Blili, S.; Milka, R.; Dorizon, H.; Said, A. H.; Korri-Youssoufi, H. Sensor Based on Redox Conjugated Poly(para-phenylene) for the Simultaneous Detection of Dopamine, Ascorbic Acid, and Uric Acid in Human Serum Sample. Anal. Bioanal. Chem. 2020, 412, 4433-4446.
  •  
  • 42. Lakshmi, D.; Whitcombe, M. J.; Davis, F.; Sharma, P. S.; Prasad, B. B. Electrochemical Detection of Uric Acid in Mixed and Clinical Samples: a Review. Electroanal. 2011, 23, 305-320.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2023; 47(2): 171-180

    Published online Mar 25, 2023

  • 10.7317/pk.2023.47.2.171
  • Received on Nov 10, 2022
  • Revised on Jan 16, 2023
  • Accepted on Jan 31, 2023

Correspondence to

  • Young-Bong Choi
  • Department of Chemistry, College of Science & Technology, Dankook University, Dandae-ro, Cheonan-si, Chungnam 31116, Korea

  • E-mail: chem0404@dankook.ac.kr