Article
  • Preparation and Characterization of Blend Thermogel System for Biomedical Applications
  • Seo Yeong Park*,#, Thi Phuc Le*,#, Hye-Eun Shim*, **,#, Sun-Woong Kang**, ***,†  , and Kang Moo Huh*,† 

  • *Department of Polymer Science and Engineering, Chungnam National University,
    99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
    **Research Group for Biomimetic Advanced Technology, Korea Institute of Toxicology, Daejeon 34114, Korea
    ***Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon 34114, Korea

  • 바이오메디컬 응용을 위한 블렌드 써모젤 시스템의 제조 및 특성분석
  • 박서영*,# ·레티푹*,# ·심혜은*, **,# ·강선웅**, ***,†  ·허강무*,† 

  • *충남대학교 고분자공학과, **안전성평가연구소, ***과학기술연합대학원대학교 인체 및 환경 독성학과

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Kim, Y. J.; Matsunaga, Y. T. Thermo-responsive Polymers and Their Application as Smart Biomaterials. J. Mater. Chem. B 2017, 5, 4307-4321.
  •  
  • 2. Dreiss, C. A. Hydrogel Design Strategies for Drug Delivery. Curr. Opin. Colloid Interface Sci. 2020, 48, 1-17.
  •  
  • 3. Mortensen, K.; Pedersen, J. S. Structural Study on the Micelle Formation of poly(ethylene oxide)-poly(propylene oxide)-poly (ethylene oxide) Triblock Copolymer in Aqueous Solution. Macromolecules 1993, 26, 805-812.
  •  
  • 4. Zhang, L.; Shen, W.; Luan, J.; Yang, D.; Wei, G.; Yu, L.; Lu, W.; Ding, J. Sustained Intravitreal Delivery of Dexamethasone Using an Injectable and Biodegradable Thermogel. Acta Biomater. 2015, 23, 271-281.
  •  
  • 5. Jeznach, O.; Kołbuk, D.; Sajkiewicz, P. Injectable Hydrogels and Nanocomposite Hydrogels for Cartilage Regeneration. J. Biomed. Mater. Res. A 2018, 106, 2762-2776.
  •  
  • 6. El Kechai, N.; Agnely, F.; Mamelle, E.; Nguyen, Y.; Ferrary, E.; Bochot, A. Recent Advances in Local Drug Delivery to the Inner Ear. Int. J. Pharm. 2015, 494, 83-101.
  •  
  • 7. Yu, L.; Zhang, Z.; Zhang, H.; Ding, J. Mixing a Sol and a Precipitate of Block Copolymers with Different Block Ratios Leads to An Injectable Hydrogel. Biomacromolecules 2009, 10, 1547-1553.
  •  
  • 8. Loh, X. J.; Li, J. Biodegradable Thermosensitive Copolymer Hydrogels for Drug Delivery. Expert Opin. Ther. Pat. 2007, 17, 965-977.
  •  
  • 9. Ward, M. A.; Georgiou, T. K. Thermoresponsive Polymers for Biomedical Applications. Polymers 2011, 3, 1215-1242.
  •  
  • 10. Yu, L.; Ding, J. Injectable Hydrogels as Unique Biomedical Materials. Chem. Soc. Rev. 2008, 37, 1473-1481.
  •  
  • 11. Nagahama, K.; Ouchi, T.; Ohya, Y. Temperature-induced Hydrogels Through Self-assembly of Cholesterol-substituted Star PEG-b-PLLA Copolymers: An Injectable Scaffold for Tissue Engineering. Adv. Funct. Mater. 2008, 18, 1220-1231.
  •  
  • 12. Da Silva, R. M.; Mano, J. F.; Reis, R. L. Smart Thermoresponsive Coatings and Surfaces for Tissue Engineering: Switching Cell-material Boundaries. Trends Biotechnol. 2007, 25, 577-583.
  •  
  • 13. Schmaljohann, D. Thermo-and pH-responsive Polymers in Drug Delivery. Adv. Drug Deliv. Rev. 2006, 58, 1655-1670.
  •  
  • 14. Giordano, C.; Albani, D.; Gloria, A.; Tunesi, M.; Rodilossi, S.; Russo, T.; Forloni, G.; Ambrosio, L.; Cigada, A. Nanocomposites for Neurodegenerative Diseases: Hydrogel-nanoparticle Combinations for a Challenging Drug Delivery. Int. J. Artif. Organs 2011, 34, 1115-1127.
  •  
  • 15. Bhattarai, N.; Gunn, J.; Zhang, M. Chitosan-based Hydrogels for Controlled, Localized Drug Delivery. Adv. Drug Deliv. Rev. 2010, 62, 83-99.
  •  
  • 16. Sarwan, T.; Kumar, P.; Choonara, Y. E.; Pillay, V. Hybrid Thermo-responsive Polymer Systems and Their Biomedical Applications. Front. Mater. 2020, 7, 73.
  •  
  • 17. Liu, L. S.; Kost, J.; Yan, F.; Spiro, R. C. Hydrogels from Biopolymer Hybrid for Biomedical, Food, and Functional Food Applications. Polymers. 2012, 4, 997-1011.
  •  
  • 18. Elluru, M.; Ma, H.; Hadjiargyrou, M.; Hsiao, B. S.; Chu, B. Synthesis and Characterization of Biocompatible Hydrogel Using Pluronics-based Block Copolymers. Polymer 2013, 54, 2088-2095.
  •  
  • 19. Zhang, L.; Parsons, D. L.; Navarre, C.; Kompella, U. B. Development and in vitro Evaluation of Sustained Release Poloxamer 407 (P407) Gel Formulations of Ceftiofur. J. Control. Release 2002, 85, 73-81.
  •  
  • 20. Escobar-Chávez, J.; López-Cervantes, M.; Naik, A.; Kalia, Y.; Quintanar-Guerrero, D.; Ganem-Quintanar, A. Applications of thermo-reversible Pluronic F-127 Gels in Pharmaceutical Formulations. J. Pharm. Pharm. Sci. 2006, 9, 339-58.
  •  
  • 21. El-Kamel, A. In vitro and in vivo Evaluation of Pluronic F127-based Ocular Delivery System for Timolol Maleate. Int. J. Pharm. 2002, 241, 47-55.
  •  
  • 22. Niu, G.; Du, F.; Song, L.; Zhang, H.; Yang, J.; Cao, H.; Zheng, Y.; Yang, Z.; Wang, G.; Yang, H. Synthesis and Characterization of Reactive Poloxamer 407s for Biomedical Applications. J. Control. Release 2009, 138, 49-56.
  •  
  • 23. Ahn, J. S.; Suh, J. M.; Lee, M.; Jeong, B. Slow Eroding Biodegradable Multiblock Poloxamer Copolymers. Polym. Int. 2005, 54, 842-847.
  •  
  • 24. Li, Z.; Cho, S.; Kwon, I. C.; Janát-Amsbury, M. M.; Huh, K. M. Preparation and Characterization of Glycol Chitin as a New Thermogelling Polymer for Biomedical Applications. Carbohyd. Polym. 2013, 92, 2267-2275.
  •  
  • 25. Cho, I. S.; Oh, H. M.; Cho, M. O.; Jang, B. S.; Cho, J. K.; Park, K. H.; Kang, S. W.; Huh, K. M. Synthesis and Characterization of Thiolated Hexanoyl Glycol Chitosan as a Mucoadhesive Thermogelling Polymer. Biomater. Res. 2018, 22, 30.
  •  
  • 26. Cho, M. O.; Li, Z.; Shim, H. E.; Cho, I. S.; Nurunnabi, M.; Park, H.; Lee, K. Y.; Moon, S. H.; Kim, K. S.; Kang, S. W.; Huh, K. M. Bioinspired Tuning of Glycol Chitosan for 3D Cell Culture. Npg Asia Mater. 2016, 8, e309.
  •  
  • 27. Kim, D. E.; Oh, H. M.; Kang, S.-W.; Huh, K. M. Preparation and Characterization of Acyl Glycol Chitosan-Containing Poloxamer Gels. Polym. Korea. 2017, 41, 1033-1040.
  •  
  • 28. Amin, M. C. I. M.; Ahmad, N.; Halib, N.; Ahmad, I. Synthesis and Characterization of Thermo-and pH-responsive Bacterial Cellulose/acrylic Acid Hydrogels for Drug Delivery. Carbohyd. Polym. 2012, 88, 465-473.
  •  
  • 29. Stolnik, S.; Davies, M. C.; Illum, L.; Davis, S. S.; Boustta, M.; Vert, M. The Preparation of Sub-200 nm Biodegradable Colloidal Particles from Poly(β-malic acid-co-benzyl malate) Copolymers and Their Surface Modification with Poloxamer and Poloxamine Surfactants. J. Control. Release. 1994, 30, 57-67.
  •  
  • 30. Merisko-Liversidge, E. M.; Liversidge, G. G. Drug Nanoparticles: Formulating Poorly Water-soluble Compounds. Toxicol. Pathol. 2008, 36, 43-48.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2023; 47(2): 181-190

    Published online Mar 25, 2023

  • 10.7317/pk.2023.47.2.181
  • Received on Nov 13, 2022
  • Revised on Jan 16, 2023
  • Accepted on Jan 30, 2023

Correspondence to

  • Sun-Woong Kang **, *** , and Kang Moo Huh *
  • *Department of Polymer Science and Engineering, Chungnam National University,
    99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
    **Research Group for Biomimetic Advanced Technology, Korea Institute of Toxicology, Daejeon 34114, Korea
    ***Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon 34114, Korea

  • E-mail: swkang@kitox.re.kr, khuh@cnu.ac.kr