Article
  • Gellan Gum/Polyvinyl Alcohol Hydrogels with Stress Relaxation Property for Application as Retinal Pigment Epithelial Cell Carrier
  • Seung Ho Choe*,#, Soo In Kim*,#, Se Eun Kim*, Seung Jae Kim*, Jin Sol Seo*, Sunjae Park*, Jeong Eun Song*, and Gilson Khang*, **, ***,†

  • *Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Korea
    **Department of PolymerNano Science & Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Korea
    ***Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Korea

  • 망막색소상피 세포전달체로 응용하기 위한응력 완화 특성을 갖는 젤란검/폴리비닐알코올 하이드로젤
  • 최승호*,# · 김수인*,# · 김세은* · 김승재* · 서진솔* · 박선재* · 송정은* · 강길선*, **, ***,†

  • *전북대학교 바이오나노융합공학과, **전북대학교 고분자나노공학과, ***전북대학교 고분자융합소재연구소

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Stern, J. H.; Tian, Y.; Funderburgh, J.; Pellegrini, G.; Zhang, K.; Goldberg, J. L.; Ali, R. R.; Young, M.; Xie, Y.; Temple, S. Regenerating Eye Tissues to Preserve and Restore Vision. Cell Stem Cell. 2018, 22, 834-849.
  •  
  • 2. Fronk, A. H.; Vargis, E.; Methods for Culturing Retinal Pigment Epithelial Cells: a Review of Current Protocols and Future Recommendations. J. Tissue Eng. 2016, 7, 2041731416650838.
  •  
  • 3. Jager, R. D.; Mieler, W. F.; Miller, J. W. Age-related Macular Degeneration. N. Engl. J. Med. 2008, 358, 2606-2617.
  •  
  • 4. Hunt, N. C.; Hallam, D.; Chichagova, V.; Steel, D. H.; Lako, M. The Application of Biomaterials to Tissue Engineering Neural Retina and Retinal Pigment Epithelium. Adv. Healthc. Mater. 2018, 7, 1800226.
  •  
  • 5. Park, J.; Baranov, P.; Aydin, A.; Abdelgawad, H.; Singh, D.; Niu, W.; Kurisawa, M.; Spector, M.; Young, M. J. In situ Cross-linking Hydrogel as a Vehicle for Retinal Progenitor Cell Transplantation. Cell Transplant. 2019, 28, 596-606.
  •  
  • 6. Laftah, W. A.; Hashim, S.; Ibrahim, A. N. Polymer Hydrogels: A Review. Polym.-Plast. Technol. Eng. 2011, 50, 1475-1486.
  •  
  • 7. Li, Y.; Yang, H. Y.; Lee, D. S. Advances in Biodegradable and Injectable Hydrogels for Biomedical Applications. J. Control. Release 2021, 330, 151-160.
  •  
  • 8. Ma, Y.; Han, T.; Yang, Q.; Wang, J.; Feng, B.; Jia, Y.; Wei, Z.; Xu, F. Viscoelastic Cell Microenvironment: Hydrogel-Based Strategy for Recapitulating Dynamic ECM Mechanics. Adv. Funct. Mater. 2021, 31, 2100848.
  •  
  • 9. Rosales, A. M.; Anseth, K. S. The Design of Reversible Hydrogels to Capture Extracellular Matrix Dynamics. Nat. Rev. Mater. 2016, 1, 15012.
  •  
  • 10. Ye, K.; Cao, L.; Li, S.; Yu, L.; Ding, J. Interplay of Matrix Stiffness and Cell–cell Contact in Regulating Differentiation of Stem Cells. ACS Appl. Mater. Interfaces 2016, 8, 21903-21913.
  •  
  • 11. Ma, Y.; Lin, M.; Huang, G.; Li, Y.; Wang, S.; Bai, G.; Lu, T. J.; Xu, F. 3D Spatiotemporal Mechanical Microenvironment: a Hydrogel-based Platform for Guiding Stem Cell Fate. Adv. Mater. 2018, 30, 1705911.
  •  
  • 12. Elosegui-Artola, A. The Extracellular Matrix Viscoelasticity as a Regulator of Cell and Tissue Dynamics. Curr. Opin. Cell Biol. 2021, 72, 10-18.
  •  
  • 13. Lou, J.; Stowers, R.; Nam, S.; Xia, Y.; Chaudhuri, O. Stress Relaxing Hyaluronic Acid-collagen Hydrogels Promote Cell Spreading, Fiber Remodeling, and Focal Adhesion Formation in 3D Cell Culture. Biomaterials 2018, 154, 213-222.
  •  
  • 14. Nam, S.; Stowers, R.; Lou, J.; Xia, Y.; Chaudhuri, O. Varying PEG Density to Control Stress Relaxation in Alginate-PEG Hydrogels for 3D Cell Culture Studies. Biomaterials 2019, 200, 15-24.
  •  
  • 15. Yu, W.; Sun, W.; Chen, H.; Wang, J.; Xue, B.; Cao, Y. Gradual Stress-Relaxation of Hydrogel Regulates Cell Spreading. Int. J. Mol. Sci. 2022, 23, 5170.
  •  
  • 16. Wang, H.; Heilshorn, S. C. Adaptable Hydrogel Networks with Reversible Linkages for Tissue Engineering. Adv. Mater. 2015, 27, 3717-3736.
  •  
  • 17. Wang, C.; Deitrick, K.; Seo, J.; Cheng, Z.; Zacharia, N. S.; Weiss, R.; Vogt, B. D. Manipulating the Mechanical Response of Hydrophobically Cross-linked Hydrogels with Ionic Associations. Macromolecules 2019, 52, 6055-6067.
  •  
  • 18. Chaudhuri, O.; Gu, L.; Klumpers, D.; Darnell, M.; Bencherif, S. A.; Weaver, J. C.; Huebsch, N.; Lee, H.-P.; Lippens, E.; Duda, G. N. Hydrogels with Tunable Stress Relaxation Regulate Stem Cell Fate and Activity. Nat. Mater. 2016, 15, 326-334.
  •  
  • 19. Fisher, S.; Lee, H.; Kallos, M.; Hunter, C. Degradation and Mechanical properties of Gellan Gum for Musculoskeletal Tissue Engineering. In 57th Annual Meeting of the Orthopaedic Research Society, Long Beach, CA, Jan. 13-16, 2011.
  •  
  • 20. Sun, J.; Zhou, Z. A Novel Ocular Delivery of Brinzolamide Based on Gellan Gum: in vitro and in vivo Evaluation. Drug Des. Dev. Ther. 2018, 12, 383.
  •  
  • 21. Kirchmajer, D. M.; Steinhoff, B.; Warren, H.; Clark, R. in het Panhuis, M. Enhanced Gelation Properties of Purified Gellan Gum. Carbohydr. Res. 2014, 388, 125-129.
  •  
  • 22. Takahashi, R.; Tokunou, H.; Kubota, K.; Ogawa, E.; Oida, T.; Kawase, T.; Nishinari, K. Solution Properties of Gellan Gum: Change in Chain Stiffness Between Single-and Double-stranded Chains. Biomacromolecules 2004, 5, 516-523.
  •  
  • 23. Vilela, J. A. P.; Bonsanto, F. P.; Cunha, R. L. Mechanical Properties of Gellan Gum Beads Prepared with Potassium or Calcium Ions. J. Texture Stud. 2022, 53, 531-539.
  •  
  • 24. Ismail, N. A.; Razali, M. H.; Amin, K. A. M. Mechanical and Physicochemical Properties Study on Gellan Gum Thin Film Prepared Using Film Casting Method. AIP Conf. Proc. 2017, 1885, 020045
  •  
  • 25. Palumbo, F. S.; Federico, S.; Pitarresi, G.; Fiorica, C.; Giammona, G. Gellan Gum-based Delivery Systems of Therapeutic Agents and Cells. Carbohydr. Polym. 2020, 229, 115430.
  •  
  • 26. Wang, F.; Wen, Y.; Bai, T. The Composite Hydrogels of Polyvinyl Alcohol–gellan Gum-Ca2+ with Improved Network Structure and Mechanical Property. Mater. Sci. Eng. C 2016, 69, 268-275.
  •  
  • 27. Ma, W.; Zhang, P.; Zhao, B.; Wang, S.; Zhong, J.; Cao, Z.; Liu, C.; Gong, F.; Matsuyama, H. Swelling Resistance and Mechanical Performance of Physical Crosslink-Based Poly(Vinyl Alcohol) Hydrogel Film with Various Molecular Weight. J. Polym. Sci. Part B: Polym. Phys. 2019, 57, 1673-1683.
  •  
  • 28. Hernández, R.; Sarafian, A.; López, D.; Mijangos, C. Viscoelastic Properties of Poly(vinyl alcohol) Hydrogels and Ferrogels Obtained Through Freezing–thawing Cycles. Polymer 2004, 45, 5543-5549.
  •  
  • 29. Asran, A. S.; Henning, S.; Michler, G. H. Polyvinyl Alcohol–collagen–hydroxyapatite Biocomposite Nanofibrous Scaffold: Mimicking the Key Features of Natural Bone at the Nanoscale Level. Polymer 2010, 51, 868-876.
  •  
  • 30. Baker, M. I.; Walsh, S. P.; Schwartz, Z.; Boyan, B. D. A Review of Polyvinyl Alcohol and Its Uses in Cartilage and Orthopedic Applications. J. Biomed. Mater. Res. Part B 2012, 100, 1451-1457.
  •  
  • 31. Ngadiman, N. H. A.; Noordin, M.; Idris, A.; Shakir, A. S. A.; Kurniawan, D. Influence of Polyvinyl Alcohol Molecular Weight on the Electrospun Nanofiber Mechanical Properties. Procedia Manuf. 2015, 2, 568-572.
  •  
  • 32. Salgado, A.; Coutinho, O. P.; Reis, R. L. Novel Starch-based Scaffolds for Bone Tissue Engineering: Cytotoxicity, Cell Culture, and Protein Expression. Tissue Eng. 2004, 10, 465-474.
  •  
  • 33. Abureesh, M. A.; Oladipo, A. A.; Gazi, M. Facile Synthesis of Glucose-sensitive Chitosan–poly(vinyl alcohol) Hydrogel: Drug Release Optimization and Swelling Properties. Int. J. Biological Macromol. 2016, 90, 75-80.
  •  
  • 34. Sebria, N. J. M.; Amin, K. A. M. Gellan Gum/ibuprofen Hydrogel for Dressing Application: Mechanical Properties, Release Activity and Biocompatibility Studies. Int. J. Appl. Chem 2016, 12, 483-498.
  •  
  • 35. Toh, W. S.; Loh, X. J. Advances in Hydrogel Delivery Systems for Tissue Regeneration. Mater. Sci. Eng. C 2014, 45, 690-697.
  •  
  • 36. Lin, S.; Sangaj, N.; Razafiarison, T.; Zhang, C.; Varghese, S. Influence of Physical Properties of Biomaterials on Cellular Behavior. Pharmaceutical Res. 2011, 28, 1422-1430.
  •  
  • 37. McBath, R. A.; Shipp, D. A. Swelling and Degradation of Hydrogels Synthesized with Degradable Poly(β-amino ester) Crosslinkers. Polym. Chem. 2010, 1, 860-865.
  •  
  • 38. Shamirzaei Jeshvaghani, E.; Ghasemi-Mobarakeh, L.; Mansurnezhad, R.; Ajalloueian, F.; Kharaziha, M.; Dinari, M.; Sami Jokandan, M.; Chronakis, I. S. Fabrication, Characterization, and Biocompatibility Assessment of a Novel Elastomeric Nanofibrous Scaffold: A Potential Scaffold for Soft Tissue Engineering. J. Biomedical Mater. Res. Part B: Appl. Biomaterials 2018, 106, 2371-2383.
  •  
  • 39. Lee, S. Y.; Zhong, X.; Valtchev, P.; Dehghani, F. Synthesis of a Biodegradable Polymer in Gas Expanded Solution: Effect of the Process on Cytocompatibility. Green Chem. 2013, 15, 1280-1291.
  •  
  • 40. Tanuma, H.; Saito, T.; Nishikawa, K.; Dong, T.; Yazawa, K.; Inoue, Y. Preparation and Characterization of PEG-cross-linked Chitosan Hydrogel Films with Controllable Swelling and Enzymatic Degradation Behavior. Carbohydr. Polym. 2010, 80, 260-265.
  •  
  • 41. Vedadghavami, A.; Minooei, F.; Mohammadi, M. H.; Khetani, S.; Kolahchi, A. R.; Mashayekhan, S.; Sanati-Nezhad, A. Manufacturing of Hydrogel Biomaterials with Controlled Mechanical Properties for Tissue Engineering Applications. Acta Biomater. 2017, 62, 42-63.
  •  
  • 42. Wang, P.; Li, X.; Zhu, W.; Zhong, Z.; Moran, A.; Wang, W.; Zhang, K.; Chen, S. 3D Bioprinting of Hydrogels for Retina Cell Culturing. Bioprinting 2018, 12, e00029.
  •  
  • 43. Chen, J.; Park, K. Synthesis and Characterization of Superporous Hydrogel Composites. J. Controlled Release 2000, 65, 73-82.
  •  
  • 44. Chaudhuri, O.; Gu, L.; Darnell, M.; Klumpers, D.; Bencherif, S. A.; Weaver, J. C.; Huebsch, N.; Mooney, D. J. Substrate Stress Relaxation Regulates Cell Spreading. Nat. Commun. 2015, 6, 1-7.
  •  
  • 45. Kamoun, E. A.; Chen, X.; Eldin, M. S. M.; Kenawy, E.-R. S. Crosslinked Poly(vinyl alcohol) Hydrogels for Wound Dressing Applications: A Review of Remarkably Blended Polymers. Arabian J. Chem. 2015, 8, 1-14.
  •  
  • 46. Zhao, X.; Huebsch, N.; Mooney, D. J.; Suo, Z. Stress-relaxation Behavior in Gels with Ionic and Covalent Crosslinks. J. Appl. Physics 2010, 107, 063509.
  •  
  • 47. Chaudhuri, O. Viscoelastic Hydrogels for 3D Cell Culture. Biomaterials Sci. 2017, 5, 1480-1490.
  •  
  • 48. Dey, K.; Agnelli, S.; Sartore, L. Dynamic Freedom: Substrate Stress Relaxation Stimulates Cell Responses. Biomaterials Sci. 2019, 7, 836-842.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2023; 47(2): 233-240

    Published online Mar 25, 2023

  • 10.7317/pk.2023.47.2.233
  • Received on Dec 2, 2022
  • Revised on Jan 26, 2023
  • Accepted on Jan 30, 2023

Correspondence to

  • Gilson Khang
  • *Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Korea
    **Department of PolymerNano Science & Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Korea
    ***Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Korea

  • E-mail: gskhang@jbnu.ac.kr