Article
  • Halloysite Nanotubes (HNTs)-Reinforced Natural Rubber (NR)/Ethylene-Propylene-Diene Monomer (EPDM) Composites
  • P. Ganeshan, M. S. Ravi Theja  , P. Ramshankar*, and K. Raja**

  • Department of Mechanical Engineering, Sri Eshwar College of Engineering, Coimbatore, Tamil Nadu - 64102, India
    *Department of Civil Engineering, College of Engineering Guindy, Anna University, Chennai, Tamil Nadu - 600025, India
    **Department of Mechanical Engineering, University College of Engineering, Dindgul, Dindgul, Tamil Nadu - 624622, India

  • 할로이사이트 나노튜브를 포함하는 천연고무(NR)/Ethylene-Propylene-Diene Monomer(EPMD) 복합소재 연구
  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Bhowmick, A. K.; Chakraborty, B. Bond Strength in Various Rubber-to-rubber Joints. Plast. Rubber Process. Appl. 1989, 11, 99-106.
  •  
  • 2. Vishvanathperumal, S.; Navaneethakrishnan, V.; Anand, G.; Gopalakannan, S. Evaluation of Crosslink Density Using Material Constants of Ethylene-propylene-Diene Monomer/styrene-butadiene Rubber with Different Nanoclay Loading: Finite Element Analysis-simulation and Experimental. Adv. Sci. Eng. Medicine 2020, 12, 632-642.
  •  
  • 3. Theja, R.; Kilari, N.; Vishvanathperumal, S.; Navaneethakrishnan, V. Modeling Tensile Modulus of Nanoclay-filled Ethylene–propylene–diene Monomer/styrene–butadiene Rubber Using Composite Theories. J. Rubber Res. 2021, 24, 847-856.
  •  
  • 4. Costa, V. G.; Nunes, R. C. R. Mechanical Properties of Blends of EPDM with NR-cellulose II System. Eur. Polym. J. 1994, 30, 1025-1028.
  •  
  • 5. Cheremisinoff, N. P. Spotlight on EPDM Elastomers. Polym. Plast. Technol. Eng. 1992, 31, 713-744.
  •  
  • 6. Coran, A. Y. Anisotropy of Ultimate Properties in Vulcanizates of EPDM/high-diene-rubber Blends. Rubber Chem. Technol. 1991, 64, 801-812.
  •  
  • 7. Shehata, A. B.; Afifi, H.; Darwish, N. A.; Mounir, A. Evaluation of the Effect of Polymeric Compounds as Compatibilizers for NR/EPDM Blend. Polym. Plast. Technol. Eng. 2006, 45, 165-170.
  •  
  • 8. Xiao, X.; Chevali, V. S.; Song, P.; Yu, B.; Yang, Y.; Wang, H. Enhanced Toughness of PLLA/PCL Blends Using Poly(d-lactide)-Poly(ε-caprolactone)-poly(d-lactide) as Compatibilizer. Compos. Commun. 2020, 21, 100385.
  •  
  • 9. Nabil, H.; Ismail, H.; Azura, A. R. Comparison of Thermo-oxidative Ageing and Thermal Analysis of Carbon Black-filled NR/Virgin EPDM and NR/Recycled EPDM Blends. Polym. Test. 2013, 32, 631-639.
  •  
  • 10. Han, T.; Nagarajan, S.; Zhao, H.; Sun, C.; Wen, S.; Zhao, S.; Zhao, S.; Zhang, L. Novel Reinforcement Behavior in Nanofilled Natural Rubber (NR)/butadiene-acrylonitrile Rubber (NBR) Blends: Filling-polymer Network and Supernanosphere. Polymer 2020, 186, 122005.
  •  
  • 11. Salzano de Luna M.; Filippone, G. Effects of Nanoparticles on the Morphology of Immiscible Polymer Blends Challenges and Opportunities. Eur. Polym. J. 2016, 79, 198-218
  •  
  • 12. Krause, IC. Polymer-polymer Compatibility. In: Paul DR, Bucknall CB (eds) Polymer Blends. John Wiley & Sons, Inc, New York, 2000, 15-30
  •  
  • 13. Ibarra, L.; Rodríguez, A.; Mora, I. Ionic Nanocomposites Based on XNBR-OMg Filled with Layered Nanoclays. Eur. Polym. J. 2007, 43, 753-761
  •  
  • 14. Sae-oui, P.; Sirisinha, C.; Thepsuwan, U.; Thapthong, P. Influence of Accelerator Type on Properties of NR/EPDM Blends. Polym. Test. 2007, 26, 1062-1067.
  •  
  • 15. Botros, S. H.; Tawfic, M. L. Synthesis and Characteristics of MAH-g-EPDM Compatibilized EPDM/NBR Rubber Blends. J. Elastomers Plast. 2006, 38, 349-365.
  •  
  • 16. Zhang, H.; Datta, R. N.; Talma, A. G.; Noordermeer, J. W. Maleic-anhydride Grafted EPM as Compatibilising Agent in NR/BR/EPDM Blends. Eur. Polym. J. 2010, 46, 754-766.
  •  
  • 17. Zaharescu, T.; Meltzer, V.; Vı̂lcu, R. Thermal Properties of EPDM/NR Blends. Polym. Degrad. Stab. 2000, 70, 341-345.
  •  
  • 18. Anancharoenwong, E.; Marthosa, S.; Suklueng, M.; Niyomwas, S.; Chaiprapat, S. Effect of Silicon Carbide on the Properties of Natural Rubber Blends with EPDM Rubber. Int. J. Integrated Eng. 2020, 12, 234-240.
  •  
  • 19. Vishvanathperumal, S.; Gopalakannan, S. Effects of the Nanoclay and Crosslinking Systems on the Mechanical Properties of Ethylene-propylene-diene Monomer/styrene Butadiene Rubber Blends Nanocomposite. Silicon 2019, 11, 117-135.
  •  
  • 20. Vishvanathperumal, S.; Anand, G. Effect of Nanoclay/nanosilica on the Mechanical Properties, Abrasion and Swelling Resistance of EPDM/SBR Composites. Silicon 2020, 12, 1925-1941.
  •  
  • 21. Vishvanathperumal, S.; Anand, G. Effect of Nanosilica and Crosslinking System on the Mechanical Properties and Swelling Resistance of EPDM/SBR Nanocomposites with and Without TESPT. Silicon 2021, 13, 3473-3497.
  •  
  • 22. Vishvanathperumal, S.; Anand, G. Effect of Nanosilica on the Mechanical Properties, Compression Set, Morphology, Abrasion and Swelling Resistance of Sulphur Cured EPDM/SBR Composites. Silicon 2022, 14, 3523-3534.
  •  
  • 23. Vishvanathperumal, S.; Gopalakannan, S. Reinforcement of Ethylene Vinyl Acetate with Carbon Black/silica Hybrid Filler Composites. Appl. Mech. Mater. 2016, 852, 16-22.
  •  
  • 24. Thomas, S.; Stephen, R. Rubber Nanocomposites: Preparation, Properties and Applications; John Wiley and Sons: Singapore, 2010.
  •  
  • 25. Vishvanathperumal, S.; Navaneethakrishnan, V.; Gopalakannan, S. The Effect of Nanoclay and Hybrid Filler on Curing Characteristics, Mechanical Properties and Swelling Resistance of Ethylene-vinyl Acetate/styrene Butadiene Rubber Blend Composite. J. Adv. Microscopy Res. 2018, 13, 469-476.
  •  
  • 26. Rezende, C. A.; Bragança, F. C.; Doi, T. R.; Lee, L. T.; Galembeck, F.; Boué, F. Natural Rubber-clay Nanocomposites: Mechanical and Structural Properties. Polymer 2010, 51, 3644-3652.
  •  
  • 27. Yu, Y.; Gu, Z.; Song, G.; Li, P.; Li, H.; Liu, W. Structure and Properties of Organo-montmorillonite/nitrile Butadiene Rubber Nanocomposites Prepared From Latex Dispersions. Appl. Clay Sci. 2011, 52, 381-385.
  •  
  • 28. Hernández, M.; del Mar Bernal, M.; Verdejo, R.; Ezquerra, T. A.; López-Manchado, M. A. Overall Performance of Natural Rubber/graphene Nanocomposites. Compos. Sci. Technol. 2012, 73, 40-46.
  •  
  • 29. Potts, J. R.; Shankar, O.; Murali, S.; Du, L.; Ruoff, R. S. Latex and Two-roll Mill Processing of Thermally-exfoliated Graphite Oxide/natural Rubber Nanocomposites. Compos. Sci. Technol. 2013, 74, 166-172.
  •  
  • 30. Bauhofer, W.; Kovacs, J. Z. A Review and Analysis of Electrical Percolation in Carbon Nanotube Polymer Composites. Compos. Sci. Technol. 2009, 69, 1486-1498.
  •  
  • 31. Lvov, Y. M.; Shchukin, D. G.; Mohwald, H.; Price, R. R. Halloysite Clay Nanotubes for Controlled Release of Protective Agents. ACS Nano, 2008, 2, 814-820.
  •  
  • 32. Shchukin, D. G.; Lamaka, S. V.; Yasakau, K. A.; Zheludkevich, M. L.; Ferreira, M. G. S.; Möhwald, H. Active Anticorrosion Coatings with Halloysite Nanocontainers. J. Phys. Chem. C, 2008, 112, 958-964.
  •  
  • 33. Guimaraes, L.; Enyashin, A. N.; Seifert, G.; Duarte, H. A. Structural, Electronic, and Mechanical Properties of Single-walled Halloysite Nanotube Models. J. Phys. Chem. C, 2010, 114, 11358-11363.
  •  
  • 34. Vergaro, V.; Abdullayev, E.; Lvov, Y. M.; Zeitoun, A.; Cingolani, R.; Rinaldi, R.; Leporatti, S. Cytocompatibility and Uptake of Halloysite Clay Nanotubes. Biomacromolecules 2010, 11, 820-826.
  •  
  • 35. Alipour, A.; Naderi, G.; Bakhshandeh, G. R.; Vali, H.; Shokoohi, S. Elastomer Nanocomposites Based on NR/EPDM/Organoclay: Morphology and Properties. Int. Polym. Proc. 2011, 26, 48-55.
  •  
  • 36. Anand, G.; Vishvanathperumal, S. Properties of SBR/NR Blend: The Effects of Carbon Black/Silica (CB/SiO2) Hybrid Filler and Silane Coupling Agent. Silicon 2022, 14, 9051-9060.
  •  
  • 37. Vishvanathperumal, S.; Gopalakannan, S. Swelling Properties, Compression Set Behavior and Abrasion Resistance of Ethylene-propylene-diene Rubber/styrene Butadiene Rubber Blend Nanocomposites. Polym. Korea 2017, 41, 433-442.
  •  
  • 38. Senthilvel, K.; Vishvanathperumal, S.; Prabu, B.; John Baruch, L. Studies on the Morphology, Cure Characteristics and Mechanical Properties of Acrylonitrile Butadiene Rubber with Hybrid Filler (carbon black/silica) Composite. Polym. Polym. Compos. 2016, 24, 473-480.
  •  
  • 39. Manoj, K. C.; Kumari, P.; Rajesh, C.; Unnikrishnan, G. Aromatic Liquid Transport Through Filled EPDM/NBR Blends. J. Polym. Res. 2010, 17, 1-9.
  •  
  • 40. Flory, P. J.; Rehner, J. Statistical Mechanics of Cross-Linked Polymer Networks I. Rubberlike Elasticity. J. Chem. Phys. 1943, 11, 512.
  •  
  • 41. Sujith, A.; Unnikrishnan, G. Molecular Sorption by Heterogeneous Natural Rubber/poly(ethylene-co-vinyl acetate) Blend Systems. J. Polym. Res. 2006, 13, 171-180.
  •  
  • 42. Thomas, P. C.; Tomlal Jose E.; Selvin Thomas, P.; Thomas, S.; Joseph, K. High-performance Nanocomposites Based on Arcylonitrile-butadiene Rubber with Fillers of Different Particle Size: Mechanical and Morphological Studies. Polym. Compos. 2010, 31, 1515-1524.
  •  
  • 43. M. O. Abou-Helal, S. H. El-Sabbagh, A Study on the Compatibility of NR-EPDM Blends Using Electrical and Mechanical Techniques, J. Elastomers Plast. 2005, 37, 319-346.
  •  
  • 44. Noriman, N. Z.; Ismail, H. Properties of Styrene Butadiene Rubber (SBR)/recycled Acrylonitrile Butadiene Rubber (NBRr) Blends: the Effects of Carbon Black/silica (CB/silica) Hybrid Filler and Silane Coupling Agent, Si69. J. Appl. Polym. Sci. 2012, 124, 19-27.
  •  
  • 45. Ismail, H.; Rosnah, N.; Rozman, H. Curing Characteristics and Mechanical Properties of Short Oil Palm Fibre Reinforced Rubber Composites. Polymer 1997, 38, 4059-4064.
  •  
  • 46. Ismail, H.; Anuar, H. Palm Oil Fatty Acid as An Activator in Carbon Black Filled Natural Rubber Compounds: Dynamic Properties, Curing Characteristics, Reversion and Fatigue Studies. Polym. Test. 2000, 19, 349-359.
  •  
  • 47. Ismail, H.; Freakley, P. K.; Sutherland, I.; Sheng, E. Effects of Multifunctional Additive on Mechanical Properties of Silica Filled Natural Rubber Compound. Eur. Polym. J. 1995, 31, 1109-1117.
  •  
  • 48. Paran, S. M. R.; Naderi, G.; Javadi, F.; Shemshadi, R.; Saeb, M. R. Experimental and Theoretical Analyses on Mechanical Properties and Stiffness of Hybrid Graphene/graphene Oxide Reinforced EPDM/NBR Nanocomposites. Mater. Today Commun. 2020, 22, 100763.
  •  
  • 49. Ismail, H.; Salleh, S. Z.; Ahmad, Z. Properties of Halloysite Nanotube (HNT) Filled SMR L and ENR 50 Nanocomposites. Int. J. Polym. Mater. Polym. Biomater. 2013, 62, 314-322.
  •  
  • 50. Pasbakhsh, P.; Ismail, H.; Fauzi, M. A.; Bakar, A. A. Influence of Maleic Anhydride Grafted Ethylene Propylene Diene Monomer (MAH-g-EPDM) on the Properties of EPDM Nanocomposites Reinforced by Halloysite Nanotubes. Polym. Test. 2009, 28, 548-559.
  •  
  • 51. Ganeche, P. S.; Balasubramanian, P.; Vishvanathperumal, S. Halloysite Nanotubes (HNTs)-Filled Ethylene-Propylene-Diene Monomer/Styrene-Butadiene Rubber (EPDM/SBR) Composites: Mechanical, Swelling, and Morphological Properties. Silicon 2022, 14, 6611-6620.
  •  
  • 52. Sundar, R.; Mohan, S. K.; Vishvanathperumal, S. Effect of Surface Modified Halloysite Nanotubes (mHNTs) on the Mechanical Properties and Swelling Resistance of EPDM/NBR Nanocomposites. Polym. Korea 2022, 46, 728-743.
  •  
  • 53. Zhixin, J.; Yuanfang, L.; Shuyan, Y.; Mingliang, D.; Baochun, G.; Demin, J. Styrene-butadiene Rubber/halloysite Nanotubes Composites Modified by Epoxidized Natural Rubber. J. Nanosci. Nanotechnol. 2011, 11, 10958-10962.
  •  
  • 54. Alipour, A.; Naderi, G.; Ghoreishy, M. H. Effect of Nanoclay Content and Matrix Composition on Properties and Stress–strain Behavior of NR/EPDM Nanocomposites. J. Appl. Polym. Sci. 2013, 127, 1275-1284.
  •  
  • 55. Pasbakhsh, P.; Ismail, H.; Fauzi, M. A.; Bakar, A. A. Influence of Maleic Anhydride Grafted Ethylene Propylene Diene Monomer (MAH-g-EPDM) on the Properties of EPDM Nanocomposites Reinforced by Halloysite Nanotubes. Polym. Test. 2009, 28, 548-559.
  •  
  • 56. Ramesh, P.; Joseph, R.; Sunny, M. C. A Comparative Evaluation of Coefficient of Friction and Mechanical Properties of Commercially Available Foley Catheters. J. Biomater. Appl. 2001, 15, 344-350.
  •  
  • 57. Maiti, M.; Bhowmick, A. K. Effect of Polymer-clay Interaction on Solvent Transport Behavior of Fluoroelastomer-clay Nanocomposites and Prediction of Aspect Ratio of Nanoclay. J. Appl. Polym. Sci. 2007, 105, 435-445.
  •  
  • 58. Stephen, R.; Varghese, S.; Joseph, K.; Oommen, Z.; Thomas, S. Diffusion and Transport Through Nanocomposites of Natural Rubber (NR) Carboxylated Styrene Butadiene Rubber (XSBR) and Their Blends. J. Memb. Sci. 2006, 282, 162-170.
  •  
  • 59. Movahed, S. O.; Ansarifar, A.; Mirzaie, F. Effect of Various Efficient Vulcanization Cure Systems on the Compression Set of a Nitrile Rubber Filled with Different Fillers. J. Appl. Polym. Sci. 2015, 132, DOI: 10.1002/APP.41512.
  •  
  • 60. Ragupathy, K.; Prabaharan, G.; Pragadish, N.; Vishvanathperumal, S. Effect of Silica Nanoparticles and Modified Silica Nanoparticles on the Mechanical and Swelling Properties of EPDM/SBR Blend Nanocomposites. Silicon 2023, DOI: 10.1007/S12633-023-02497-1
  •  
  • 61. Ghaderzadeh, S.; Esmizadeh, E.; Vahidifar, A.; Naderi, G.; Ghoreishy, M. H. R.; Mekonnen, T. H. Naturally Occurring Halloysite Nanotubes for Enhanced Durability of Natural Rubber/ethylene Propylene Diene Monomer Rubber Vulcanizate. J. Vinyl Additive Technol. 2021, 27, 855-867.
  •  
  • 62. Rastin, H.; Jafari, S. H.; Saeb, M. R.; Khonakdar, H. A.; Wagenknecht, U.; Heinrich, G. On the Reliability of Existing Theoretical Models in Anticipating Type of Morphology and Domain Size in HDPE/PA-6/EVOH Ternary Blends. Europ. Polym. J. 2014, 53, 1-12.
  •  
  • 63. Pasbakhsh, P.; Ismail, H.; Mohd Nor, A. F.; Abu Bakar, A. Electron Beam Irradiation of Sulphur Vulcanised Ethylene Propylene Diene Monomer (EPDM) Nanocomposites Reinforced by Halloysite Nanotubes. Plastics, Rubber and Compos. 2012, 41, 430-440.
  •  
  • 64. Rooj, S.; Das, A.; Thakur, V.; Mahaling, R. N.; Bhowmick, A. K.; Heinrich, G. Preparation and Properties of Natural Nanocomposites Based on Natural Rubber and Naturally Occurring Halloysite Nanotubes. Mater. Design 2010, 31, 2151-2156.
  •  
  • 65. Das, R. K.; Ragupathy, K.; Kumar, T. S.; Vishvanathperumal, S. Effect of Halloysite Nanotubes (HNTs) on Mechanical Properties of EPDM/NBR Blend-Nanocomposites. Polymer Korea 2023, 47, 221-232.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2023; 47(4): 404-416

    Published online Jul 25, 2023

  • 10.7317/pk.2023.47.4.404
  • Received on Nov 30, 2022
  • Revised on Mar 14, 2023
  • Accepted on May 22, 2023

Correspondence to

  • M. S. Ravi Theja
  • Department of Mechanical Engineering, Sri Eshwar College of Engineering, Coimbatore, Tamil Nadu - 64102, India

  • E-mail: thejaneeds@gmail.com