Article
  • Effect of Silane Modified Cellulose Nano Fiber on the Adhesion Properties Between Conductive Paste and PET Film
  • San Kang and Kim Youn Cheol

  • Major in Polymer Science and Engineering, Kongju National University, Cheonan 31080, Korea

  • 실란 변성 셀룰로오스나노섬유(CNF)의 전도성페이스트와 PET 필름의 접착특성에 미치는 영향
  • 강 산 · 김연철

  • 공주대학교 신소재공학부 고분자공학전공

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Ghil, M. S.; Lee, B. S.; Kwak, D. K.; Shin, J. K.; Choi, S. H. A Study on the Implementation of a Hazardous Chemical Detection System Using a Graphene Sensor and an Artificial Intelligence Based Risk Prediction Response Algorithm, Trans. Korean Inst. Power Electron. 2020, 11, 248-250.
  •  
  • 2. Zhao, D.; Zhu, Y.; Cheng, W. Cellulose-Based Flexible Functional Materials for Emerging Intelligent Electronics, Adv. Mater. 2021, 33, 2000619.
  •  
  • 3. Rim, Y. S.; Bae, S. H.; Chen, H.; De Marco, N. Devices toward Printable and Flexible Sensors, Adv. Mater. 2016, 28, 4415-4440.
  •  
  • 4. Ku, H. S.; Shim, C. U.; Kim Y. C. Effect of Carbon Filler and Ester Type Binder on the Reactivity and Adhesive Properties with PET Film of Conductive Paste, App. Chem. Eng. 2022, 33, 381-385.
  •  
  • 5. Muñoz, J.; Baeza, M. Customized Bio-functionalization of Nanocomposite Carbon Paste Electrodes for Electrochemical Sensing: A Mini Review, Electroanalysis 2017, 29, 1660-1669.
  •  
  • 6. Huang, L.; Hu, Q.; Gao, S.; Liu, W.; Wei, X. Recent Progress and Applications of Cellulose and Its Derivatives-Based Humidity Sensors: A Review, Carbohydr. Polym. 2023, 318, 121139.
  •  
  • 7. Arun, R.; Shruthy, R.; Preetha, R.; Sreejit, V.; Biodegradable Nano Composite Reinforced with Cellulose Nano Fiber from Coconut Industry Waste for Replacing Synthetic Plastic Food Packaging, Chemosphere 2022, 291, 132786.
  •  
  • 8. Chen, T.; Wang, H.; Wang, J.; Fu, Q.; Tang, Y.; Preparation and Characterization of Lignin Containing Cellulose Nanofiber from Moso Bamboo via Acidified Choline Chloride/ethylene Glycol Pretreatment Combined with Homogenization Industrial Crops and Products, Ind. Crops Prod. 2023, 202, 117115.
  •  
  • 9. Bulota, M.; Kreitsmann, K.; Hughes, M.; Paltakari, J. Acetylated Microfibrillated Cellulose as a Toughening Agent in Poly(Lactic-Acid) J. Appl. Polym. Sci. 2012, 216, 449-458.
  •  
  • 10. Navarro, J. R.; Bergström, L. Labelling of N-hydroxysuccinimide-modified Rhodamine B on Cellulose Nanofibrils by the Amidation Reaction, Rsc Adv. 2014, 4, 60757-60761.
  •  
  • 11. Lee, Y. N.; Park, S. S.; Ha, K. R. Preparation and Properties of Eco-friendly Polyurethane Nanocomposites Using Cellulose Nanocrystals with Amino Group as Fillers, Polymer 2020, 44, 397-407.
  •  
  • 12. Thakur, M. K.; Gupta, R. K.; Thakur, V. K. Surface Modification of Cellulose Using Silane Coupling Agent, Carbohydr. Polym. 2014, 111, 849-855.
  •  
  • 13. Ifukua, S.; Yanob, H. Effect of a Silane Coupling Agent on the Mechanical Properties of a Microfibrillated Cellulose Composite, Int. J. Biol. Macromol. 2015, 74, 428-432.
  •  
  • 14. Dhalia, K.; Daver, F.; Cass, P.; Adhikari, B. Surface Modification of the Cellulose Nanocrystals Through Vinyl Silane Grafting, Int. J. Biol. Macromol. 2022, 200, 397-408.
  •  
  • 15. Han, S. W.; Kim, Y. C. Study on the Physical Properties of PP/CNF Slurry Composites with Chemical Modification, J. Korea Acad.-Ind. Co. Soc. 2022, 23, 35-40.
  •  
  • 16. Han, S. W.; Shin, D. W.; Kim, G. I.; Kim, Y. C. Study on the Physical Properties of Polypropylene/Silane Treated Cellulose Nano Fiber (Si-CNF) Composites and Hydrophobization of Si-CNF, Polym. Korea, 2021, 45, 261-266.
  •  
  • 17. Abdelmouleh, M.; Boufi, S.; Belgacem, M. N.; Duarte, A. P.; Salah, A. B.; Gandini, A. Modification of Cellulosic Fibres with Functionalised Silanes: Development of Surface Properties, Int. J. Adhes. Adhes. 2004, 24, 43-54.
  •  
  • 18. Park, H. J.; Yook, S. Y.; Park, S. Y.; Youn, H. J. Hydrophobization of Cellulose Nanofibrils by Silylation under an Aqueous System. J. of Korea TAPPI. 2018, 50, 72-77.
  •  
  • 19. Liu, P.; Li, Y.; Wu, C.; Liu, C.; Ma, Y.; Zhang, Y.; Xing, K.; Liu, G.; Wang, J.; Huang, Y.; Song, A.; Li, M.; Yang, X. Theoretical Estimation on Electrical Conductivity, Synergy Effect and Piezoresistive Behavior for Nanocomposites with Hybrid Carbon Nanotube/Graphene Based on Modified Bethe Lattice Method, Comput. Mater. Sci. 2022, 202, 110986-110997.
  •  
  • 20. Vu, V. P.; Mai, V. D.; Lee, S. H. Hybrid Carbon Nanofiller/Polymer Composites as Self-Healable Current Collector Electrodes for Use in High-Performance Flexible Metal-Free Supercapacitors, J. Alloys Compd. 2023, 933, 167823-167837.
  •  
  • 21. Shin, K. M.; Kim, Y. C. Study on the Physical Properties of Nylon66/Conductive Material (CM) Composites According to Master-batch and Composition of CM., Polym. Korea 2023, 47, 26-32.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2024; 48(1): 46-52

    Published online Jan 25, 2024

  • 10.7317/pk.2024.48.1.46
  • Received on Sep 5, 2023
  • Revised on Oct 27, 2023
  • Accepted on Nov 2, 2023

Correspondence to

  • Kim Youn Cheol
  • Major in Polymer Science and Engineering, Kongju National University, Cheonan 31080, Korea

  • E-mail: younkim@kongju.ac.kr