Article
  • Effect of Fluorine Substitution on the Physical and Optical Characteristics of BDT-ttTPD Copolymers for Organic Semiconductors
  • Seungju Kim# , Jin Soo Yoo*,#, Junghoon Lee*,† , and Kyu Cheol Lee

  • Department of Applied Chemistry·Food Science Technology, Dong-Eui University, 176 Eomgwangro, Busan 47340, Korea
    *Division of Chemical Engineering, Dongseo University, Busan 47011, Korea

  • 유기반도체용 BDT-ttTPD 공중합체의 불소 치환이 물리적, 광학적 특성에 미치는 영향
  • 김승주# · 유진수*,# · 이정훈*,† · 이규철

  • 동의대학교 응용화학·식품공학과, *동서대학교 화학공학부

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Henson, Z. B.; Müllen, K.; Bazan, G. C. Design Strategies for Organic Semiconductors beyond the Molecular Formula. Nat. Chem. 2012, 4, 699-704.
  •  
  • 2. Lee, H.; Kang, B. Research Trends in Conjugated Polymer-Based Thermoelectric Materials. Polym. Sci. Tech. 2015, 33, 311-325.
  •  
  • 3. Woo, Y. H.; Lee, H. S.; Choi, E. J.; Kim, B. S. Synthesis and Photovoltaic Properties of a Low Band Gap Polymer for Organic Solar Cell. Polym. Korea 2015, 39, 71-77.
  •  
  • 4. Park, S. S.; Moon, S. Mo.; Son, S. Y. Recent Advances in Conjugated Polymers for Stretchable Electronics. Polym. Sci. Tech. 2022, 33, 293-296.
  •  
  • 5. Tong, Y.; Xiao, Z.; Du, X.; Zuo, C.; Li, Y.; Lv, M.; Yuan, Y.; Yi, C.; Hao, F.; Hua, Y.; Lei, T.; Lin, Q.; Sun, K.; Zhao, D.; Duan, C.; Shao, X.; Li, W.; Yip, H. L.; Xiao, Z.; Zhang, B.; Bian, Q.; Cheng, Y.; Liu, S.; Cheng, M.; Ding, L. Progress of the Key Materials for Organic Solar Cells. Sci. China. Chem. 2020, 63, 758-765.
  •  
  • 6. Kim, J.; Park, J. B.; Lee, W. H.; Kim, J. H.; Hwang, D. H.; Kang, I. N. High-Performance Fluorine-Containing BDT-Based Copolymer for Organic Solar Cells with a High Open Circuit Voltage. J. Polym. Sci. A Polym. Chem. 2017, 55, 2506-2512.
  •  
  • 7. Shavez, M.; Panda, A. N. Assessing Effects of Different π Bridges on Properties of Random Benzodithiophene-Thienothiophene Donor and Non-Fullerene Acceptor Based Active Layer. J. Phys. Chem. A. 2021, 125, 9852-9864.
  •  
  • 8. Lee, J. Synthesis and Characterization of Cyclopentadithiophene and Pyridylthiadiazole-Based Polymers with Single and Double Bonds. Polym. Korea 2023, 47, 487-494.
  •  
  • 9. Murthy, L. N. S.; Kramer, A.; Zhang, B.; Su, J. M.; Chen, Y. S.; Wong, K. T.; Vandenberghe, W. G.; Hsu, J. W. P. Energy Levels in Dilute-Donor Organic Solar Cell Photocurrent Generation: A Thienothiophene Donor Molecule Study. Org. Electron. 2021, 92, 106137.
  •  
  • 10. Chiou, D. Y.; Su, Y. C.; Hung, K. E.; Hsu, J. Y.; Hsu, T. G.; Wu, T. Y.; Cheng, Y. J. Thiophene-Vinylene-Thiophene-Based Donor-Acceptor Copolymers with Acetylene-Inserted Branched Alkyl Side Chains to Achieve High Field-Effect Mobilities. Chem. Mater. 2018, 30, 7611-7622.
  •  
  • 11. Chang, S. W.; Muto, T.; Kondo, T.; Liao, M. J.; Horie, M. Double Acceptor Donor-Acceptor Alternating Conjugated Polymers Containing Cyclopentadithiophene, Benzothiadiazole and Thienopyrroledione: Toward Subtractive Color Organic Photovoltaics. Polym. J. 2017, 49, 113-122.
  •  
  • 12. Zhao, C.; Yang, F.; Xia, D.; Zhang, Z.; Zhang, Y.; Yan, N.; You, S.; Li, W. Thieno[3,4-: C] Pyrrole-4,6-Dione-Based Conjugated Polymers for Organic Solar Cells. Chem. Commun. 2020, 56, 10394-10408.
  •  
  • 13. Agneeswari, R.; Kim, D.; Tamilavan, V.; Shin, C. G.; Park, S. H.; Jin, Y. Polym. Korea 2023, 47, 79-86.
  •  
  • 14. Li, M.; An, C.; Pisula, W.; Müllen, K. Cyclopentadithiophene-Benzothiadiazole Donor-Acceptor Polymers as Prototypical Semiconductors for High-Performance Field-Effect Transistors. Acc. Chem. Res. 2018, 51, 1196-1205.
  •  
  • 15. Xu, C.; Wang, Z.; Dong, W.; He, C.; Shi, Y.; Bai, J.; Zhang, C.; Gao, M.; Jiang, H.; Deng, Y.; Ye, L.; Han, Y.; Geng, Y. Aggregation Behavior and Electrical Performance Control of Isoindigo-Based Conjugated Polymers via Carbosilane Side Chain Engineering. Macromolecules 2022, 55, 10385-10394.
  •  
  • 16. Zhou, N.; Facchetti, A. Naphthalenediimide (NDI) Polymers for All-Polymer Photovoltaics. Mater. Today. 2018, 21, 377-390.
  •  
  • 17. Huang, H.; Yang, L.; Facchetti, A.; Marks, T. J. Organic and Polymeric Semiconductors Enhanced by Noncovalent Conformational Locks. Chem. Rev. 2017, 117, 10291-10318.
  •  
  • 18. Kim, J. H.; Wood, S.; Park, J. B.; Wade, J.; Song, M.; Yoon, S. C.; Jung, I. H.; Kim, J. S.; Hwang, D. H.; Optimization and Analysis of Conjugated Polymer Side Chains for High-Performance Organic Photovoltaic Cells. Adv. Funct. Mater. 2016, 26, 1517-1525.
  •  
  • 19. Barford, W. Electronic and Optical Properties of Conjugated Polymers, 2nd Ed.; International Series of Monographs on physics; Oxford Science Publications: Oxford, 2013; pp 1-305.
  •  
  • 20. Ziffer, M. E.; Jo, S. B.; Liu, Y.; Zhong, H.; Mohammed, J. C.; Harrison, J. S.; Jen, A. K. Y.; Ginger, D. S. Tuning H-and J-Aggregate Behavior in π-Conjugated Polymers via Noncovalent Interactions. J. Phys. Chem. C 2018, 122, 18860-18869.
  •  
  • 21. Spano, F. C.; Silva, C. H- and J-Aggregate Behavior in Polymeric Semiconductors. Annu. Rev. Phys. Chem. 2014, 65, 477-500.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2024; 48(1): 93-100

    Published online Jan 25, 2024

  • 10.7317/pk.2024.48.1.93
  • Received on Oct 20, 2023
  • Revised on Nov 24, 2023
  • Accepted on Nov 25, 2023

Correspondence to

  • Junghoon Lee* , and Kyu Cheol Lee
  • Department of Applied Chemistry·Food Science Technology, Dong-Eui University, 176 Eomgwangro, Busan 47340, Korea
    *Division of Chemical Engineering, Dongseo University, Busan 47011, Korea

  • E-mail: junghoonlee@dongseo.ac.kr, kclee@deu.ac.kr