• Effect of the Ratio of Oxidizing Agent to Monomer for Polyaniline Synthesis on the Activity of Catalyst for Oxygen Reduction Reaction in Anion Exchange Membrane Fuel Cells
  • Jae Sang Lee# and Won Suk Jung*,#,†

  • School of Food Biotechnology and Chemical Engineering, Hankyong National University, 327 Jungang-ro, Anseong 17579, Korea
    *Research Center of Chemical Technology, Hankyong National University, 327 Jungang-ro, Anseong 17579, Korea

  • Polyaniline 합성 시 단량체와 산화제 비율이 음이온 교환막 연료전지에 대한 산소 환원 촉매의 활성에 미치는 영향
  • 이재상# · 정원석*,#,†

  • 한경국립대학교 식품생명화학공학부, *한경국립대학교 화학기술연구센터

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

  • 1. Jung, W. S.; Lee, W. H.; Oh, H.-S.; Popov, B. N. Highly stable and ordered intermetallic PtCo alloy catalyst supported on graphitized carbon containing Co@CN for oxygen reduction reaction. J. Mater. Chem. A. 2020, 8, 19833-19842.
  • 2. Yoon, H. S.; Jung, W. S. Effect of Nitrogen Precursors in Non-precious Metal Catalysts on Activity for the Oxygen Reduction Reaction. Korean Chem. Eng. Res. 2022, 60, 151-158.
  • 3. Li, J.; Wang, S.; Ren, Y.; Ren, Z.; Qiu, Y.; Yu, J. Nitrogen-doped Activated Carbon with Micrometer-scale Channels Derived from Luffa Sponge Fibers as Electrocatalysts for Oxygen Reduction Reaction with High Stability in Acidic Media. Electrochim. Acta 2014, 149, 56-64.
  • 4. Zamani, P.; Higgins, D.; Hassan, F.; Jiang, G.; Wu, J.; Abureden, S.; Chen, Z. Electrospun Iron–Polyaniline–Polyacrylonitrile Derived Nanofibers as Non–Precious Oxygen Reduction Reaction Catalysts for PEM Fuel Cells. Electrochim. Acta 2014, 139, 111-116.
  • 5. Wang, G.; Jiang, K.; Xu, M.; Min, C.; Ma, B.; Yang, X. A High Activity Nitrogen-doped Carbon Catalyst for Oxygen Reduction Reaction Derived from Polyaniline-iron Coordination Polymer. J. Power Sources 2014, 266, 222-225.
  • 6. Quílez-Bermejo, J.; González-Gaitán, C.; Morallón, E.; Cazorla-Amorós, D. Effect of Carbonization Conditions of Polyaniline on Its Catalytic Activity Towards ORR. Some Insights About the Nature of the Active Sites. Carbon 2017, 119, 62-71.
  • 7. Hu, Y.; Zhao, X.; Huang, Y.; Li, Q.; Bjerrum, N. J.; Liu, C.; Xing, W. Synthesis of Self-supported Non-precious Metal Catalysts for Oxygen Reduction Reaction with Preserved Nanostructures From the Polyaniline Nanofiber Precursor. J. Power Sources 2013, 225, 129-136.
  • 8. Wang, H.; Wang, W.; Yu, H.; Mao, Q.; Xu, Y.; Li, X.; Wang, Z.; Wang, L. Interface Engineering of Polyaniline-functionalized Porous Pd Metallene for Alkaline Oxygen Reduction Reaction. Appl. Catal. B: Environ. 2022, 307, 121172.
  • 9. Li, B.; Liu, D. Temperature-induced Evolution of Micro-morphology of Polyaniline Prepared by Gradually Adding Oxidants: Experiments and Mechanism. Polym. Compo. 2016, 37, 28-36.
  • 10. Huang, J.; Kaner, R. B. Nanofiber Formation in the Chemical Polymerization of Aniline: A Mechanistic Study. Angew. Chem. Int. Ed. 2004, 43, 5817-5821.
  • 11. Das, T.; Pandey, V. K.; Verma, S.; Pandey, S. K.; Verma, B. Optimization of the Ratio of Aniline, Ammonium Persulfate, Para-toluenesulfonic Acid for the Synthesis of Conducting Polyaniline and Its Use in Energy Storage Devices. Int. J. Energy Res. 2022, 46, 19914-19928.
  • 12. Wang, Y. Preparation and Application of Polyaniline Nanofibers: an Overview. Polymer International 2018, 67, 650-669.
  • 13. Donohue, M. D.; Aranovich, G. L. Classification of Gibbs Adsorption Isotherms. Adv. Colloid Interface Sci. 1998, 76-77, 137-152.
  • 14. Sing, K. S. W. Reporting Physisorption Data for Gas/solid Systems with Special Reference to the Determination of Surface Area and Porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603-619.
  • 15. Youm, H. N.; Kim, K. J.; Chung, T. J. Graphitization of Petroleum Cokes by Alumunum Catalyst. J. Korean Ceram. Soc. 1995, 32, 677-684.
  • 16. Liu, G.; Li, X.; Ganesan, P.; Popov, B. N. Development of Non-precious Metal Oxygen-reduction Catalysts for PEM Fuel Cells Based on N-doped Ordered Porous Carbon. Appl. Catal. B: Environ. 2009, 93, 156-165.
  • 17. Deng, H.; Li, Q.; Liu, J.; Wang, F. Active Sites for Oxygen Reduction Reaction on Nitrogen-doped Carbon Nanotubes Derived From Polyaniline. Carbon 2017, 112, 219-229.
  • 18. Batchelor-McAuley, C. Defining the Onset Potential. Curr. Opin. Electrochem. 2023, 37, 101176.
  • 19. Xing, L.; Song, C.; Kong, A. N–S-codoped Mesoporous Carbons from Melamine-2-thenaldehyde Polymers on Carbon Nanotubes for Oxygen Reduction and Zn-air Batteries. J. Solid State Chem. 2020, 287, 121348.
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2024; 48(3): 318-325

    Published online May 25, 2024

  • 10.7317/pk.2024.48.3.318
  • Received on Dec 27, 2023
  • Revised on Jan 24, 2024
  • Accepted on Jan 29, 2024

Correspondence to

  • Won Suk Jung
  • Research Center of Chemical Technology, Hankyong National University, 327 Jungang-ro, Anseong 17579, Korea

  • E-mail: